Back to Search Start Over

Dimension reduction for data with heterogeneous missingness

Authors :
Ling, Yurong
Liu, Zijing
Xue, Jing-Hao
Source :
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
Publication Year :
2021
Publisher :
PMLR, 2021.

Abstract

Dimension reduction plays a pivotal role in analysing high-dimensional data. However, observations with missing values present serious difficulties in directly applying standard dimension reduction techniques. As a large number of dimension reduction approaches are based on the Gram matrix, we first investigate the effects of missingness on dimension reduction by studying the statistical properties of the Gram matrix with or without missingness, and then we present a bias-corrected Gram matrix with nice statistical properties under heterogeneous missingness. Extensive empirical results, on both simulated and publicly available real datasets, show that the proposed unbiased Gram matrix can significantly improve a broad spectrum of representative dimension reduction approaches.<br />Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021)

Details

Database :
OpenAIRE
Journal :
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
Accession number :
edsair.doi.dedup.....e3da92a79e8646e3496407040e31b50e