Back to Search Start Over

K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies

Authors :
Vinayaka R. Prasad
Amanda J. Meyer
Mark J. Landau
Robert A. Domaoal
Karen S. Anderson
Chisanga Lwatula
Scott J. Garforth
Publication Year :
2010

Abstract

Lys65 residue, in the fingers domain of human immunodeficiency virus reverse transcriptase (RT), interacts with incoming dNTP in a sequence-independent fashion. We showed previously that a 5-amino-acid deletion spanning Lys65 and a K65A substitution both enhanced the fidelity of dNTP insertion. We hypothesized that the Lys65 residue enhances dNTP misinsertion via interactions with the gamma-phosphate of the incoming dNTP. We now examine this hypothesis in pre-steady-state kinetic studies using wild-type human immunodeficiency virus-1 RT and two substitution mutants, K65A and K65R. K65R mutation did not greatly increase misinsertion fidelity, but K65A mutation led to higher incorporation fidelity. For a misinsertion to become a permanent error, it needs to be accompanied by the extension of the mispaired terminus thus formed. Both mutants and the wild-type enzyme discriminated against the mismatched primer at the catalytic step (k(pol)). Additionally, K65A and K65R mutants displayed a further decrease in mismatch extension efficiency, primarily at the level of dNTP binding. We employed hydroxyl radical footprinting to determine the position of the RT on the primer/template. The wild-type and Lys65-substituted enzymes occupied the same position at the primer terminus; the presence of a mismatched primer terminus caused all three enzymes to be displaced to a -2 position relative to the primer 3' end. In the context of an efficiently extended mismatched terminus, the presence of the next complementary nucleotide overcame the displacement, resulting in a complex resembling the matched terminus. The results are consistent with the observed reduction in k(pol) in mispaired primer extension being due to the position of the enzyme at a mismatched terminus. Our work shows the influence of the stabilizing interactions of Lys65 with the incoming dNTP on two different aspects of polymerase fidelity.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e37427cd53a4a91291eb9c3b79bda382