Back to Search
Start Over
Insulin resistance determines phagocytic nicotinamide adenine dinucleotide phosphate oxidase overactivation in metabolic syndrome patients
- Publication Year :
- 2009
- Publisher :
- Lippincott, Williams & Wilkins, 2009.
-
Abstract
- OBJECTIVE: Metabolic syndrome (MetS) is associated with insulin resistance and increases the cardiovascular risk. Oxidative stress constitutes a potential mechanism that links insulin resistance and cardiovascular disease. The aim of this study was to analyze the relationship of NADPH oxidase activation with insulin resistance, and the effect of this interaction on the cardiovascular risk in MetS patients. METHODS: NADPH oxidase-dependent superoxide production and expression was evaluated by luminescence and western blot, respectively, in peripheral blood mononuclear cells obtained from 125 patients with MetS. Insulin resistance was defined by the homeostasis model assessment index. Matrix metalloproteinase-9 was quantified by enzyme-linked immunosorbent assay in plasma samples. To ascertain the mechanisms involved in vivo, we performed in-vitro experiments in cultured macrophages. RESULTS: Fifty-six percent of patients with MetS showed insulin resistance. Plasma matrix metalloproteinase-9 levels were higher (P < 0.05) in insulin-resistant patients than in patients with insulin sensitivity. NADPH oxidase-dependent superoxide production was augmented (P < 0.05) in insulin-resistant patients with respect to insulin-sensitive patients. The interaction between insulin resistance and abnormally high NADPH oxidase-mediated superoxide production was associated with the highest matrix metalloproteinase-9 values. Increased NADPH oxidase-dependent superoxide production was significantly associated with higher NADPH oxidase p22phox expression in insulin-resistant than in insulin-sensitive patients. Interestingly, insulin upregulated p22phox in peripheral blood mononuclear cells and in murine macrophages. CONCLUSION: Insulin resistance is associated with phagocytic NADPH oxidase activation. This association results in the highest cardiovascular risk in MetS patients.
- Subjects :
- Male
medicine.medical_specialty
Physiology
medicine.medical_treatment
Monocyte/macrophage
Enzyme-Linked Immunosorbent Assay
Cell Line
Mice
chemistry.chemical_compound
Insulin resistance
Downregulation and upregulation
Superoxides
Internal medicine
Internal Medicine
medicine
Animals
Humans
Metabolic Syndrome
Phagocytes
NADPH oxidase
biology
Superoxide
business.industry
Insulin
NADPH Oxidases
Middle Aged
medicine.disease
Metabolic syndrome
Enzyme Activation
Oxidative Stress
Endocrinology
chemistry
biology.protein
Female
P22phox
Insulin Resistance
Cardiology and Cardiovascular Medicine
business
Nicotinamide adenine dinucleotide phosphate
Nicotinamide adenine dinucleotide phosphate oxidase
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....e360f5208d835a3f8af7eaeee43edbf1