Back to Search Start Over

Research on Real-Time Multiple Single Garbage Classification Based on Convolutional Neural Network

Authors :
Cheng-rong Li
Le-le Sun
Jian-ye Yuan
Xin-yuan Nan
Source :
Mathematical Problems in Engineering, Vol 2020 (2020)
Publication Year :
2020
Publisher :
Hindawi Limited, 2020.

Abstract

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.

Details

ISSN :
15635147 and 1024123X
Volume :
2020
Database :
OpenAIRE
Journal :
Mathematical Problems in Engineering
Accession number :
edsair.doi.dedup.....e34e558e1d41735ee8b0a0ce1e5e9f30