Back to Search
Start Over
Arginine decarboxylase: A novel biological target of mercury compounds identified in PC12 cells
- Source :
- Biochemical pharmacology. 118
- Publication Year :
- 2016
-
Abstract
- Mercury compounds are well-known toxic environmental pollutants and potently induce severe neurotoxicological effects in human and experimental animals. Previous studies showed that one of the mechanisms of mercury compounds neurotoxicity arose from the over-activation of the N-methyl d-aspartate (NMDA)-type glutamate receptor induced by increased glutamate release. In this work, we aimed to investigate the molecular mechanisms of Hg compounds neurotoxicities by identifying their biological targets in cells. Firstly, the inhibitory effects of four Hg compounds, including three organic (methyl-, ethyl- and phenyl-mercury) and one inorganic (Hg2+) Hg compounds, on the activity of arginine decarboxylase (ADC), a key enzyme in the central agmatinergic system, were evaluated. They were found to inhibit the ADC activity significantly with methylmercury (MeHg) being the strongest (IC50=7.96nM). Furthermore, they showed remarkable inhibitory effects on ADC activity in PC12 cells (MeHg>EtHg>PhHg>HgCl2), and led to a marked loss in the level of agmatine, an endogenous neuromodulatory and neuroprotective agent that selectively blocks the activation of NMDA receptors. MeHg was detected in the immunoprecipitated ADC from the cells, providing unequivocal evidence for the direct binding of MeHg with ADC in the cell. Molecular dynamics simulation revealed that Hg compounds could form the coordination bond not only with cofactor PLP of ADC, but also with substrate arginine. Our finding indicated that MeHg could attenuate the neuroprotective effects of agmatine by the inhibition of ADC, a new cellular target of MeHg, which might be implicated in molecular mechanism of MeHg neurotoxicity.
- Subjects :
- 0301 basic medicine
Models, Molecular
Carboxy-lyases
Arginine
Agmatine
Carboxy-Lyases
Cell Survival
Nerve Tissue Proteins
Molecular Dynamics Simulation
Biochemistry
Neuroprotection
Decarboxylation
Gene Expression Regulation, Enzymologic
03 medical and health sciences
chemistry.chemical_compound
0302 clinical medicine
Coordination Complexes
Cell Line, Tumor
medicine
Animals
Enzyme Inhibitors
Pharmacology
Neurons
Binding Sites
Chemistry
Glutamate receptor
Neurotoxicity
Methylmercury Compounds
medicine.disease
Phenylmercury Compounds
Ethylmercuric Chloride
Absorption, Physiological
Rats
body regions
030104 developmental biology
Mercuric Chloride
Biocatalysis
NMDA receptor
Environmental Pollutants
Arginine decarboxylase
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 18732968
- Volume :
- 118
- Database :
- OpenAIRE
- Journal :
- Biochemical pharmacology
- Accession number :
- edsair.doi.dedup.....e3199831262d4a2085b0f12ebe548107