Back to Search Start Over

HERFD-XANES spectroscopy at the U M-edge applied to the analysis of U oxidation state in a heavily contaminated wetland soil

Authors :
Arnaud Mangeret
Guillaume Morin
Jessica Brest
Myrtille O.J.Y. Hunault
Jean-Claude Boulliard
Lucie Stetten
Pierre Le Pape
Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC)
Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Applied Geochemistry, Applied Geochemistry, Elsevier, 2020, 122, pp.104714. ⟨10.1016/j.apgeochem.2020.104714⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Determining U oxidation state in contaminated (sub)surface soils and sediments is essential to depict the geochemical processes affecting U in natural media. This information is also mandatory to infer the mechanisms governing the mobilization and transfer of this toxic radionuclide to the environment. Here, in attempt to detect U(IV), U(V) and U(VI) in wetland soil samples contaminated by past mining activities, we have performed high-resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) measurements at the U M4-edge. Linear combination fitting (LCF) analysis of the spectra have been conducted using reference samples representative of the wetland geochemistry, in which U occurs as U-phosphate minerals and mononuclear U complexes. Our experimental constraints for HERFD measurements at low energy (3.7 keV) implied to limit the thickness of the Kapton® foil used to protect the samples, which lead to slow oxidation by air during the measurements. In this context, U(IV) appeared to partly oxidize into U(VI) and/or U(V) within a few tens of hours. Nano-crystalline reference samples showed contrasted oxidation pathways for U(IV), transforming into U(V)/U(VI)-uranate in biogenic nano-uraninite, and into U(VI)-uranyl in nano-U(IV)-rhabdophane. In the wetland soils samples, uranium was mainly present as U(IV) and U(VI) with detection of minor U(V) (

Details

Language :
English
ISSN :
08832927
Database :
OpenAIRE
Journal :
Applied Geochemistry, Applied Geochemistry, Elsevier, 2020, 122, pp.104714. ⟨10.1016/j.apgeochem.2020.104714⟩
Accession number :
edsair.doi.dedup.....e3139ea7256c52c74ea6d63ce7ed4684
Full Text :
https://doi.org/10.1016/j.apgeochem.2020.104714⟩