Back to Search Start Over

Applications of a cloudsat-trmm and cloudsat-gpm satellite coincidence dataset

Authors :
Andrea Camplani
Giulia Panegrossi
Jean François Rysman
Ardeshir Ebtehaj
Daniele Casella
Sajad Vahedizade
Ramon Padullés
Guosheng Liu
Jie Gong
F. Joseph Turk
Norman B. Wood
Paolo Sanò
Lisa Milani
Mark S. Kulie
Sarah Ringerud
Randy J. Chase
National Aeronautics and Space Administration (US)
California Institute of Technology (CALTECH)
Earth Science System Interdisciplinary Center [College Park] (ESSIC)
College of Computer, Mathematical, and Natural Sciences [College Park]
University of Maryland [College Park]
University of Maryland System-University of Maryland System-University of Maryland [College Park]
University of Maryland System-University of Maryland System
NASA Goddard Space Flight Center (GSFC)
Department of Informatics and System Sciences (Sapienza University of Rome)
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
CNR Institute of Atmospheric Sciences and Climate (ISAC)
Consiglio Nazionale delle Ricerche (CNR)
University of Oklahoma (OU)
Department of Civil, Environmental and Geo-Engineering [Minneapolis]
University of Minnesota [Twin Cities] (UMN)
University of Minnesota System-University of Minnesota System
National Oceanic and Atmospheric Administration (NOAA)
Florida State University [Tallahassee] (FSU)
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
University of Minnesota System
University of Wisconsin-Madison
Source :
Remote Sensing, Remote Sensing, MDPI, 2021, 13 (12), pp.2264. ⟨10.3390/rs13122264⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, Remote Sensing; Volume 13; Issue 12; Pages: 2264, Remote Sensing, Vol 13, Iss 2264, p 2264 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

The Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) (Ku-and Ka-band, or 14 and 35 GHz) provides the capability to resolve the precipitation structure under moderate to heavy precipitation conditions. In this manuscript, the use of near-coincident observations between GPM and the CloudSat Profiling Radar (CPR) (W-band, or 94 GHz) are demonstrated to extend the capability of representing light rain and cold-season precipitation from DPR and the GPM passive microwave constellation sensors. These unique triple-frequency data have opened up applications related to cold-season precipitation, ice microphysics, and light rainfall and surface emissivity effects.<br />J.G. acknowledges the efforts by Ian Adams (NASA Goddard Space Flight Center) for support of airborne data collection during the IMPACTS campaign, and support from NASA grant 80NSSC20K0087.

Details

ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing, Remote Sensing, MDPI, 2021, 13 (12), pp.2264. ⟨10.3390/rs13122264⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, Remote Sensing; Volume 13; Issue 12; Pages: 2264, Remote Sensing, Vol 13, Iss 2264, p 2264 (2021)
Accession number :
edsair.doi.dedup.....e27bc6beccd603439bb9e8e6b58a4f4f