Back to Search Start Over

Learning Binary Decision Trees by Argmin Differentiation

Authors :
Zantedeschi, Valentina
Kusner, Matt J
Niculae, Vlad
The Inria London Programme (Inria-London)
Computer science department [University College London] (UCL-CS)
University College of London [London] (UCL)-University College of London [London] (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria)
MOdel for Data Analysis and Learning (MODAL)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS)
Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies
University College of London [London] (UCL)
University of Amsterdam [Amsterdam] (UvA)
Department of Computer science [University College of London] (UCL-CS)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS)
Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
Zantedeschi, Valentina
Source :
International Conference on Machine Learning, International Conference on Machine Learning, Jun 2021, Virtual, United Kingdom
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We address the problem of learning binary decision trees that partition data for some downstream task. We propose to learn discrete parameters(i.e., for tree traversals and node pruning) and continuous parameters (i.e., for tree split functions and prediction functions) simultaneously usingargmin differentiation. We do so by sparsely relaxing a mixed-integer program for the discrete parameters, to allow gradients to pass throughthe program to continuous parameters. We derive customized algorithms to efficiently compute the forward and backward passes. This meansthat our tree learning procedure can be used as an (implicit) layer in arbitrary deep networks, and can be optimized with arbitrary loss functions. We demonstrate that our approach produces binary trees that are competitive with existing single tree and ensemble approaches, in both supervised and unsupervised settings. Further, apart from greedy approaches (which do not have competitive accuracies), our method is faster to train than all other tree-learning baselines we compare with. The code for reproducing the results is available at https://github.com/vzantedeschi/LatentTrees.

Details

Language :
English
Database :
OpenAIRE
Journal :
International Conference on Machine Learning, International Conference on Machine Learning, Jun 2021, Virtual, United Kingdom
Accession number :
edsair.doi.dedup.....e26215ade5e1000208a5bf41dff45cd1