Back to Search Start Over

Improving marine disease surveillance through sea temperature monitoring, outlooks and projections

Authors :
C. Mark Eakin
Gang Liu
Maya L. Groner
Jeffrey Maynard
C. Drew Harvell
Scott F. Heron
Andrew P. Dobson
Gareth J. Williams
Bette L. Willis
Kathleen Reardon
Ruben van Hooidonk
Jeffrey D. Shields
Robert P. Glenn
Department of Ecology and Evolutionary Biology [Ithaca]
Cornell University [New York]
Laboratoire d'Excellence CORAIL (LabEX CORAIL)
Institut de Recherche pour le Développement (IRD)-Université des Antilles et de la Guyane (UAG)-École des hautes études en sciences sociales (EHESS)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de La Réunion (UR)-Université de la Polynésie Française (UPF)-Université de la Nouvelle-Calédonie (UNC)-Institut d'écologie et environnement-Université des Antilles (UA)
Centre de recherches insulaires et observatoire de l'environnement (CRIOBE)
Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Cooperative Institute for Marine and Atmospheric Studies (CIMAS)
Rosenstiel School of Marine and Atmospheric Science (RSMAS)
University of Miami [Coral Gables]-University of Miami [Coral Gables]
NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML)
National Oceanic and Atmospheric Administration (NOAA)
NOAA Center for Satellite Applications and Research (STAR)
NOAA National Environmental Satellite, Data, and Information Service (NESDIS)
National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA)
College of Marine and Environmental Sciences [Cairns]
James Cook University (JCU)
ARC Centre of Excellence for Coral Reef Studies (CoralCoE)
School of Ocean Sciences
Bangor University
Centre for Veterinary Epidemiological Research
University of Prince Edward Island
Department of Ecology and Evolutionary Biology [Princeton]
Princeton University
Coral Reef Watch
National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA)-NOAA National Environmental Satellite, Data, and Information Service (NESDIS)
Marine Geophysical Laboratory
Dept. of Marine Fisheries and Resources, Marine Biology Division
Hadhramout University of Science and Technology
Department of Marine Resources (DMR)
State of Maine
Virginia Institute of Marine Science (VIMS)
Institut de Recherche pour le Développement (IRD)-Université des Antilles et de la Guyane (UAG)-École des hautes études en sciences sociales (EHESS)-École pratique des hautes études (EPHE)
Université de Perpignan Via Domitia (UPVD)-École pratique des hautes études (EPHE)
Source :
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), 2016, 371 (1689), ⟨10.1098/rstb.2015.0208⟩, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), Royal Society, The, 2016, 371 (1689), ⟨10.1098/rstb.2015.0208⟩, Philosophical Transactions of the Royal Society B: Biological Sciences
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host–pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 128C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 128C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats.

Details

Language :
English
ISSN :
00804622
Database :
OpenAIRE
Journal :
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), 2016, 371 (1689), ⟨10.1098/rstb.2015.0208⟩, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), Royal Society, The, 2016, 371 (1689), ⟨10.1098/rstb.2015.0208⟩, Philosophical Transactions of the Royal Society B: Biological Sciences
Accession number :
edsair.doi.dedup.....e238cba800bb8a37f6a9d258871662d5