Back to Search Start Over

On an integral criterion for hypercontractivity of diffusion semigroups and extremal functions

Authors :
Michel Ledoux
Source :
Journal of Functional Analysis. 105(2):444-465
Publication Year :
1992
Publisher :
Elsevier BV, 1992.

Abstract

In the line of investigation of the works by D. Bakry and M. Emery (Lecture Notes in Math., Vol. 1123, pp. 175–206, Springer-Verlag, New York/Berlin 1985) and O. S. Rothaus ( J. Funct. Anal. 42 (1981) 102–109; J. Funct. Anal. 65 (1986) 358–367), we study an integral inequality behind the “Γ2 criterion” of D. Bakry and M. Emery (see previous reference) and its applications to hypercontractivity of diffusion semigroups. With, in particular, a short proof of the hypercontractivity property of the Ornstein-Uhlenbeck semigroup, our exposition unifies in a simple way several previous results, interpolating smoothly from the spectral gap inequalities to logarithmic Sobolev inequalities and even true Sobolev inequalities. We examine simultaneously the extremal functions for hypercontractivity and logarithmic Sobolev inequalities of the Ornstein-Uhlenbeck semigroup and heat semigroup on spheres.

Details

ISSN :
00221236
Volume :
105
Issue :
2
Database :
OpenAIRE
Journal :
Journal of Functional Analysis
Accession number :
edsair.doi.dedup.....e1c834ec354800d66fcf0fe7f852fe1d
Full Text :
https://doi.org/10.1016/0022-1236(92)90084-v