Back to Search
Start Over
A Lower Bound on Blowup Rates for the 3D Incompressible Euler Equation and a Single Exponential Beale-Kato-Majda Type Estimate
- Source :
- Communications in Mathematical Physics. 314:265-280
- Publication Year :
- 2012
- Publisher :
- Springer Science and Business Media LLC, 2012.
-
Abstract
- We prove a Beale-Kato-Majda type criterion for the loss of regularity for solutions of the incompressible Euler equations in $H^{s}({\mathbb R}^3)$, for $s>\frac52$. Instead of double exponential estimates of Beale-Kato-Majda type, we obtain a single exponential bound on $\|u(t)\|_{H^s}$ involving the length parameter introduced by P. Constantin in \cite{co1}. In particular, we derive lower bounds on the blowup rate of such solutions.<br />AMS Latex, 15 pages
- Subjects :
- Mathematics::Analysis of PDEs
FOS: Physical sciences
Type (model theory)
01 natural sciences
Upper and lower bounds
Physics::Fluid Dynamics
symbols.namesake
Mathematics - Analysis of PDEs
76B03
FOS: Mathematics
Incompressible euler equations
0101 mathematics
Mathematical Physics
Mathematical physics
Physics
010102 general mathematics
Double exponential function
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Vorticity
Exponential function
Euler equations
010101 applied mathematics
Compressibility
symbols
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 14320916 and 00103616
- Volume :
- 314
- Database :
- OpenAIRE
- Journal :
- Communications in Mathematical Physics
- Accession number :
- edsair.doi.dedup.....e1af514c3196574f9d356ef918886b8d
- Full Text :
- https://doi.org/10.1007/s00220-012-1523-y