Back to Search Start Over

A Lower Bound on Blowup Rates for the 3D Incompressible Euler Equation and a Single Exponential Beale-Kato-Majda Type Estimate

Authors :
Thomas Chen
Nataša Pavlović
Source :
Communications in Mathematical Physics. 314:265-280
Publication Year :
2012
Publisher :
Springer Science and Business Media LLC, 2012.

Abstract

We prove a Beale-Kato-Majda type criterion for the loss of regularity for solutions of the incompressible Euler equations in $H^{s}({\mathbb R}^3)$, for $s>\frac52$. Instead of double exponential estimates of Beale-Kato-Majda type, we obtain a single exponential bound on $\|u(t)\|_{H^s}$ involving the length parameter introduced by P. Constantin in \cite{co1}. In particular, we derive lower bounds on the blowup rate of such solutions.<br />AMS Latex, 15 pages

Details

ISSN :
14320916 and 00103616
Volume :
314
Database :
OpenAIRE
Journal :
Communications in Mathematical Physics
Accession number :
edsair.doi.dedup.....e1af514c3196574f9d356ef918886b8d
Full Text :
https://doi.org/10.1007/s00220-012-1523-y