Back to Search
Start Over
Local density approximation for the almost-bosonic anyon gas
- Source :
- Analysis & PDE, Analysis & PDE, Mathematical Sciences Publishers, 2017, Anal. PDE 10, no. 5 (2017), 1169-1200
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- We study the minimizers of an energy functional with a self-consistent magnetic field, which describes a quantum gas of almost-bosonic anyons in the average-field approximation. For the homogeneous gas we prove the existence of the thermodynamic limit of the energy at fixed effective statistics parameter, and the independence of such a limit from the shape of the domain. This result is then used in a local density approximation to derive an effective Thomas--Fermi-like model for the trapped anyon gas in the limit of a large effective statistics parameter (i.e., "less-bosonic" anyons).<br />Minor typo corrected, version accepted in Analysis and PDEs
- Subjects :
- analysi
mean-field energy
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Thomas-Fermi theory
01 natural sciences
35Q40
numerical analysi
applied mathematics
46N50
Limit (mathematics)
Mathematical Physics
Mathematical physics
Energy functional
Physics
anyons
fractional statistics
magnetic Schrödinger operator
analysis
numerical analysis
Numerical Analysis
Thomas-fermi theory
Applied Mathematics
Fractional statistics
Mathematical Physics (math-ph)
Magnetic field
81V70
Local-density approximation
Condensed Matter - Quantum Gases
Analysis of PDEs (math.AP)
Anyons
Magnetic schrödinger operator
Mean-field energy
[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]
Anyon
FOS: Physical sciences
81S05
Topological quantum computer
fractional statistic
Mathematics - Analysis of PDEs
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
anyon
0101 mathematics
Thomas–Fermi theory
010306 general physics
Independence (probability theory)
[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]
Condensed Matter::Quantum Gases
Condensed Matter - Mesoscale and Nanoscale Physics
010102 general mathematics
Quantum Gases (cond-mat.quant-gas)
Thermodynamic limit
Analysis
Subjects
Details
- Language :
- English
- ISSN :
- 21575045 and 1948206X
- Database :
- OpenAIRE
- Journal :
- Analysis & PDE, Analysis & PDE, Mathematical Sciences Publishers, 2017, Anal. PDE 10, no. 5 (2017), 1169-1200
- Accession number :
- edsair.doi.dedup.....e1a0a764c89371003f355762d543e6d7