Back to Search Start Over

Electrostatic Switches That Mediate the pH-Dependent Conformational Change of 'Short' Recombinant Human Pseudocathepsin D

Authors :
Nathan E. Goldfarb
and Alexander J. Duckworth
Ambar Patel
Ben M. Dunn
Arjo K. Bose
Minh T. Lam
Source :
Biochemistry. 44:15725-15733
Publication Year :
2005
Publisher :
American Chemical Society (ACS), 2005.

Abstract

Human cathepsin D (hCatD) is an aspartic peptidase with a low pH optimum. X-ray crystal structures have been solved for an active, low pH (pH 5.1) form (CatD(lo)) [Baldwin, E. T., Bhat, T. N., Gulnik, S., Hosur, M. V., Sowder, R. C., Cachau, R. E., Collins, J., Silva, A. M., and Erickson, J. W. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6796-6800] and an inactive, high pH (pH 7.5) form (CatD(hi)) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. It has been suggested that ionizable switches involving the carboxylate side chains of E5, E180, and D187 may mediate the reversible interconversion between CatD(hi) and CatD(lo) and that Y10 stabilizes CatD(hi) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. To test these hypotheses, we generated single point mutants in "short" recombinant human pseudocathepsin D (srCatD), a model kinetically similar to hCatD [Beyer, B. M., and Dunn, B. M. (1996) J. Biol. Chem. 271, 15590-15596]. E180Q, Y10F, and D187N exhibit significantly higher kcat/Km values (2-, 3-, and 6-fold, respectively) at pH 3.7 and 4.75 compared to srCatD, indicating that these residues are important in stabilizing the CatD(hi). E5Q exhibits a 2-fold lower kcat/Km compared to srCatD at both pH values, indicating the importance of E5 in stabilizing the CatD(lo). Accordingly, full time-course "pH-jump" (pH 5.5-4.75) studies of substrate hydrolysis indicate that E180Q, D187N, and Y10F have shorter kinetic lag phases that represent the change from CatD(hi) to CatD(lo) compared to srCatD and E5Q. Intrinsic tryptophan fluorescence reveals that the variants have a native-like structure over the pH range of our assays. The results indicate that E180 and D187 participate as an electrostatic switch that initiates the conformational change of CatD(lo) to CatD(hi) and Y10 stabilizes CatD(hi) by hydrogen bonding to the catalytic Asp 33. E5 appears to play a less significant role as an ionic switch that stabilizes CatD(lo).

Details

ISSN :
15204995 and 00062960
Volume :
44
Database :
OpenAIRE
Journal :
Biochemistry
Accession number :
edsair.doi.dedup.....e19da5578b8c2552cd3d67635d818607
Full Text :
https://doi.org/10.1021/bi0511686