Back to Search
Start Over
Electrostatic Switches That Mediate the pH-Dependent Conformational Change of 'Short' Recombinant Human Pseudocathepsin D
- Source :
- Biochemistry. 44:15725-15733
- Publication Year :
- 2005
- Publisher :
- American Chemical Society (ACS), 2005.
-
Abstract
- Human cathepsin D (hCatD) is an aspartic peptidase with a low pH optimum. X-ray crystal structures have been solved for an active, low pH (pH 5.1) form (CatD(lo)) [Baldwin, E. T., Bhat, T. N., Gulnik, S., Hosur, M. V., Sowder, R. C., Cachau, R. E., Collins, J., Silva, A. M., and Erickson, J. W. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6796-6800] and an inactive, high pH (pH 7.5) form (CatD(hi)) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. It has been suggested that ionizable switches involving the carboxylate side chains of E5, E180, and D187 may mediate the reversible interconversion between CatD(hi) and CatD(lo) and that Y10 stabilizes CatD(hi) [Lee, A. Y., Gulnik, S. V., and Erickson, J. W. (1998) Nat. Struct. Biol. 5, 866-871]. To test these hypotheses, we generated single point mutants in "short" recombinant human pseudocathepsin D (srCatD), a model kinetically similar to hCatD [Beyer, B. M., and Dunn, B. M. (1996) J. Biol. Chem. 271, 15590-15596]. E180Q, Y10F, and D187N exhibit significantly higher kcat/Km values (2-, 3-, and 6-fold, respectively) at pH 3.7 and 4.75 compared to srCatD, indicating that these residues are important in stabilizing the CatD(hi). E5Q exhibits a 2-fold lower kcat/Km compared to srCatD at both pH values, indicating the importance of E5 in stabilizing the CatD(lo). Accordingly, full time-course "pH-jump" (pH 5.5-4.75) studies of substrate hydrolysis indicate that E180Q, D187N, and Y10F have shorter kinetic lag phases that represent the change from CatD(hi) to CatD(lo) compared to srCatD and E5Q. Intrinsic tryptophan fluorescence reveals that the variants have a native-like structure over the pH range of our assays. The results indicate that E180 and D187 participate as an electrostatic switch that initiates the conformational change of CatD(lo) to CatD(hi) and Y10 stabilizes CatD(hi) by hydrogen bonding to the catalytic Asp 33. E5 appears to play a less significant role as an ionic switch that stabilizes CatD(lo).
- Subjects :
- Models, Molecular
Conformational change
Protein Conformation
Stereochemistry
Molecular Sequence Data
Ionic bonding
Cathepsin D
Biochemistry
Article
Fluorescence
chemistry.chemical_compound
Protein structure
Enzyme Stability
Humans
Point Mutation
Amino Acid Sequence
Carboxylate
Enzyme kinetics
Hydrogen bond
Tryptophan
Substrate (chemistry)
Hydrogen-Ion Concentration
Recombinant Proteins
Kinetics
chemistry
Sequence Alignment
Subjects
Details
- ISSN :
- 15204995 and 00062960
- Volume :
- 44
- Database :
- OpenAIRE
- Journal :
- Biochemistry
- Accession number :
- edsair.doi.dedup.....e19da5578b8c2552cd3d67635d818607
- Full Text :
- https://doi.org/10.1021/bi0511686