Back to Search
Start Over
Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood
- Source :
- Virology Journal, Vol 14, Iss 1, Pp 1-9 (2017), Virology Journal
- Publication Year :
- 2017
- Publisher :
- BMC, 2017.
-
Abstract
- Background In 1980, smallpox disease was eradicated from nature and Variola virus, the etiological agent of smallpox, was confined to two laboratories, one located in Russia (Moscow) later moved to VECTOR (Novosibirsk, Siberia) and one in the United States (CDC Atlanta). Vaccinations among the general public ceased shortly after the successful eradication campaign, resulting in an increasingly immunologically susceptible population. Because of the possibility of intentional reintroduction of Variola virus and the emergence of other pathogenic poxviruses, there is a great need for the development of medical countermeasures to treat poxvirus disease. It is highly likely that the U.S. FDA “animal rule” will be necessary for regulatory approval of these interventions. Therefore, relevant animal models and the associated supporting assays will require development to stand up to regulatory scrutiny. Methods An optimized real time PCR assay for the detection of orthopoxviruses has been developed by researchers at the United States Army Research Institute of Infectious Diseases (USAMRIID). To support animal studies that will be used to support approval of medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood matrix as a measurement of viremia. This manuscript describes the validation of the process, including DNA extraction from whole blood anticoagulated with EDTA, for obtaining and quantitating monkeypox genomes by evaluating precision, accuracy, the standard curve, specificity, robustness and stability of the assay and/or components of the assay. Results The assay had a lower limit of quantitation of 50 genome copies/5 uL sample, upper limit of quantitation of 5 × 107 GC/5uL sample and a limit of detection of 2.5 genome copies /5uL sample. The assay was specific for orthopoxvirus. Matrix effects were detected and suggest the presence of PCR inhibitor(s) that was co-extracted with the target DNA. Conclusions The assay has been validated for the purpose of quantitating monkeypox viral load in blood from cynomolgus macaques. This assay has and will continue to support submissions to the FDA for approval of antiviral therapeutics for smallpox. Electronic supplementary material The online version of this article (10.1186/s12985-017-0880-8) contains supplementary material, which is available to authorized users.
- Subjects :
- 0301 basic medicine
viruses
030106 microbiology
Viremia
Genome, Viral
Real-Time Polymerase Chain Reaction
Sensitivity and Specificity
lcsh:Infectious and parasitic diseases
03 medical and health sciences
Monkeypox
Virology
medicine
Animals
Smallpox
lcsh:RC109-216
Orthopoxvirus
Monkeypox virus
biology
United States Food and Drug Administration
Methodology
virus diseases
medicine.disease
biology.organism_classification
DNA extraction
United States
Vaccination
Macaca fascicularis
Infectious Diseases
DNA, Viral
Immunology
Variola virus
Viral load
Subjects
Details
- Language :
- English
- Volume :
- 14
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Virology Journal
- Accession number :
- edsair.doi.dedup.....e179d5e64c85e7df552bbcbe7663ac4d
- Full Text :
- https://doi.org/10.1186/s12985-017-0880-8