Back to Search Start Over

Why do State-of-the-art Super-Resolution Methods not work well for Bone Microstructure CT Imaging?

Authors :
Jhuboo, Rehan
Redko, Ievgen
Guignandon, Alain
Peyrin, Françoise
Sebban, Marc
Jhuboo, Rehan
Laboratoire Hubert Curien [Saint Etienne] (LHC)
Institut d'Optique Graduate School (IOGS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
INSERM U1059, SAINBIOSE - Santé, Ingénierie, Biologie, Saint-Etienne (SAINBIOSE-ENSMSE)
Centre Ingénierie et Santé (CIS-ENSMSE)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
2022 30th European Signal Processing Conference (EUSIPCO), EUSIPCO 2022, EUSIPCO 2022, Aug 2022, Belgrade, France
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; 3D Computerized Tomography (CT) is a gold standard technique to assess bone microstructure in the context of bone diseases such as osteoporosis. However, when acquired invivo, bone images may suffer from a low spatial resolution and the presence of noise due to the limited tolerable radiation exposure. One way to overcome this issue consists in applying Super-Resolution (SR) techniques that aim at recovering high resolution images. Significant progress has been recently made thanks to deep learning SR methods trained on natural image datasets. To measure the reconstruction quality, Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are commonly used in the SR literature. In this paper, we give evidence of the limitation of these two criteria. Through extensive experiments performed from a dataset of mice tibias specifically collected and imaged for this study, we show that state of the art deep learning-based SR methods miss important details about the bone microstructure which is not reflected by the PSNR and SSIM values. This study opens the door to future promising lines of research including new SR methods regularized with respect to morphometric and topological parameters of bone microstructures.

Details

Language :
English
Database :
OpenAIRE
Journal :
2022 30th European Signal Processing Conference (EUSIPCO), EUSIPCO 2022, EUSIPCO 2022, Aug 2022, Belgrade, France
Accession number :
edsair.doi.dedup.....e05b9d19e3be8477df1aecc90ca12743