Back to Search Start Over

Improving InSAR geodesy using Global Atmospheric Models

Authors :
Piyush Agram
Romain Jolivet
Mark Simons
Marie-Pierre Doin
Zhenghong Li
Nina Y. Lin
Gilles Peltzer
Seismological Laboratory, California Institute of Technology
California Institute of Technology (CALTECH)
Jet Propulsion Laboratory (JPL)
NASA-California Institute of Technology (CALTECH)
Division of Geological and Planetary Sciences [Pasadena]
Institut des Sciences de la Terre (ISTerre)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Department of Earth and Space Sciences [Los Angeles]
University of California [Los Angeles] (UCLA)
University of California (UC)-University of California (UC)
School of Geographical and Earth Sciences, University of Glasgow
University of Glasgow
California Institute of Technology (CALTECH)-NASA
University of California-University of California
Source :
Journal of Geophysical Research : Solid Earth, Journal of Geophysical Research : Solid Earth, 2014, 119 (3), pp.2324-2341. ⟨10.1002/2013JB010588⟩, Journal of Geophysical Research : Solid Earth, American Geophysical Union, 2014, 119 (3), pp.2324-2341. ⟨10.1002/2013JB010588⟩
Publication Year :
2014
Publisher :
American Geophysical Union (AGU), 2014.

Abstract

International audience; Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

Details

ISSN :
21699356 and 21699313
Volume :
119
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Solid Earth
Accession number :
edsair.doi.dedup.....e0481dbce8c0432d9e012d86f9def74c