Back to Search Start Over

A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components

Authors :
Marta Peirats-Llobet
Soon-Ki Han
Miguel González-Guzmán
Lesia Rodriguez
Cheol Woong Jeong
Doris Wagner
Pedro L. Rodriguez
Borja Belda-Palazón
Source :
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Publication Year :
2016
Publisher :
Oxford University Press (OUP), 2016.

Abstract

[EN] Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRMS1760D (S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants.<br />Work in Dr. Rodriguez's laboratory was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas (grant BIO2014-52537-R). M.P.-L. and L.R. were supported by FPI fellowships, and M.G.-G. by a JAE-DOC research contract. Funding of chromatin research in the Wagner laboratory is supported by National Science Foundation grant MCB-0925071.

Details

Language :
English
Database :
OpenAIRE
Journal :
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Accession number :
edsair.doi.dedup.....e03dd27f52ca996bf641ab74b66a9071
Full Text :
https://doi.org/10.1016/j.molp.2015.10.003