Back to Search Start Over

The blow-up rate for a non-scaling invariant semilinear wave equations

Authors :
Mohamed Ali Hamza
Hatem Zaag
Department of Mathematics, College of science, Imam Abdulrahman Bin Faisal University
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
Source :
Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123652. ⟨10.1016/j.jmaa.2019.123652⟩
Publication Year :
2019
Publisher :
arXiv, 2019.

Abstract

We consider the semilinear wave equation $$\partial_t^2 u -\Delta u =f(u), \quad (x,t)\in \mathbb{R}^N\times [0,T),\qquad (1)$$ with $f(u)=|u|^{p-1}u\log^a (2+u^2)$, where $p>1$ and $a\in \mathbb{R}$. We show an upper bound for any blow-up solution of (1). Then, in the one space dimensional case, using this estimate and the logarithmic property, we prove that the exact blow-up rate of any singular solution of (1) is given by the ODE solution associated with $(1)$, namely $u'' =|u|^{p-1}u\log^a (2+u^2)$ Unlike the pure power case ($g(u)=|u|^{p-1}u$) the difficulties here are due to the fact that equation (1) is not scale invariant.<br />Comment: 37 pages

Details

ISSN :
0022247X and 10960813
Database :
OpenAIRE
Journal :
Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123652. ⟨10.1016/j.jmaa.2019.123652⟩
Accession number :
edsair.doi.dedup.....e002003bbd91593b9ee9631820606cfc
Full Text :
https://doi.org/10.48550/arxiv.1906.12059