Back to Search
Start Over
The blow-up rate for a non-scaling invariant semilinear wave equations
- Source :
- Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123652. ⟨10.1016/j.jmaa.2019.123652⟩
- Publication Year :
- 2019
- Publisher :
- arXiv, 2019.
-
Abstract
- We consider the semilinear wave equation $$\partial_t^2 u -\Delta u =f(u), \quad (x,t)\in \mathbb{R}^N\times [0,T),\qquad (1)$$ with $f(u)=|u|^{p-1}u\log^a (2+u^2)$, where $p>1$ and $a\in \mathbb{R}$. We show an upper bound for any blow-up solution of (1). Then, in the one space dimensional case, using this estimate and the logarithmic property, we prove that the exact blow-up rate of any singular solution of (1) is given by the ODE solution associated with $(1)$, namely $u'' =|u|^{p-1}u\log^a (2+u^2)$ Unlike the pure power case ($g(u)=|u|^{p-1}u$) the difficulties here are due to the fact that equation (1) is not scale invariant.<br />Comment: 37 pages
- Subjects :
- Log-type nonlinearity
Applied Mathematics
010102 general mathematics
Blow-up
Ode
Semilinear wave equation
Mathematics::Analysis of PDEs
Scale invariance
Space (mathematics)
Wave equation
01 natural sciences
Upper and lower bounds
010101 applied mathematics
Combinatorics
Mathematics - Analysis of PDEs
Singular solution
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
Invariant (mathematics)
Scaling
Analysis
35L05, 35B44, 35L71, 35L67, 35B40
Mathematics
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 0022247X and 10960813
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2020, 483 (2), pp.123652. ⟨10.1016/j.jmaa.2019.123652⟩
- Accession number :
- edsair.doi.dedup.....e002003bbd91593b9ee9631820606cfc
- Full Text :
- https://doi.org/10.48550/arxiv.1906.12059