Back to Search Start Over

Characterization of scalable Josephson memory element containing a strong ferromagnet

Authors :
Daniela Salvoni
Giovanni Ausanio
Loredana Parlato
Antonio Vettoliere
Halima Giovanna Ahmad
Davide Massarotti
Francesco Tafuri
Carmine Granata
Roberta Caruso
Roberta Satariano
Domenico Montemurro
Giovanni Piero Pepe
Alessandro Miano
Parlato, Loredana
Caruso, Roberta
Vettoliere, Antonio
Satariano, Roberta
Ahmad, Halima Giovanna
Miano, Alessandro
Montemurro, Domenico
Salvoni, Daniela
Ausanio, Giovanni
Tafuri, Francesco
Pepe, Giovanni Piero
Massarotti, Davide
Granata, Carmine
Source :
Journal of applied physics 127 (2020). doi:10.1063/5.0004554, info:cnr-pdr/source/autori:Parlato, Loredana; Caruso, Roberta; Vettoliere, Antonio; Satariano, Roberta; Ahmad, Halima Giovanna; Miano, Alessandro; Montemurro, Domenico; Salvoni, Daniela; Ausanio, Giovanni; Tafuri, Francesco; Pepe, Giovanni Piero; Massarotti, Davide; Granata, Carmine/titolo:Characterization of scalable Josephson memory element containing a strong ferromagnet/doi:10.1063%2F5.0004554/rivista:Journal of applied physics/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:127
Publication Year :
2020
Publisher :
AIP Publishing, 2020.

Abstract

Josephson junctions (JJs) containing ferromagnetic (F) materials are being considered for applications as cryogenic random access memories (RAM). In this work, we report on the fabrication and characterization of tunnel JJs, based on Nb technology with a strong ferromagnetic interlayer Ni80Fe20 alloy (Permalloy), which is suitable for the realization of devices with reduced area and guarantees relative low saturation and coercive fields in the use of JJs as RAM elements. We have successfully realized Josephson memory elements that work well down to 7 mu m(2) preserving high values of the characteristic voltage. We have also investigated the role of the F layer thickness, and by measuring the critical current dependence on the external applied magnetic field, we have optimized our devices as memory elements using thin ferromagnetic layers with thickness down to 3nm. We have experimentally proved their functioning as memory elements by applying magnetic field pulses in opposite directions that can change the F layer magnetization.

Details

ISSN :
10897550 and 00218979
Volume :
127
Database :
OpenAIRE
Journal :
Journal of Applied Physics
Accession number :
edsair.doi.dedup.....dfc42be1b6a9c03bb1a73a1ff723d49a
Full Text :
https://doi.org/10.1063/5.0004554