Back to Search Start Over

Effect of timosaponin A-III, from Anemarrhenae asphodeloides Bunge (Liliaceae), on calcium mobilization in vascular endothelial and smooth muscle cells and on vascular tension

Authors :
Warren Su
Wei Chung Chen
Chieh Fu Chen
Kang Ju Chou
Yu Yuan Wu
Chun Peng Liu
Jin Shiung Cheng
Kam Chung Lee
Yuk Keung Lo
Chung Ren Jan
Guei-Jane Wang
Lie Chwen Lin
Source :
Life sciences. 71(9)
Publication Year :
2002

Abstract

The effects of timosaponin A-III (TA-III), from Rhizoma Anemarrhenae, on Ca(2+) mobilization in vascular endothelial cells and smooth muscle cells and on vascular tension have been explored. TA-III increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) in endothelials cells at a concentration larger than 5 microM with an EC(50) of 15 microM, and increased [Ca(2+)](i) in smooth muscle cells at a concentration larger than 1 microM with an EC(50) of 8 microM. Within 5 min, the [Ca(2+)](i) signal was composed of a gradual rise, and the speed of rising depended on the concentration of TA-III. The [Ca(2+)](i) signal was abolished by removing extracellular Ca(2+) and was recovered after reintroduction of Ca(2+). The TA-III-induced [Ca(2+)](i) increases in smooth muscle cells were partly inhibited by 10 microM nifedipine or 50 microM La(3+), but was insensitive to 10 microM verapamil and diltiazem. TA-III (10-100 microM) inhibited 0.3 microM phenylephrine-induced vascular contraction, which was abolished by pretreatment with 100 microM N(omega)-nitro-L-arginine (L-NNA) or by denuding the aorta. TA-III also increased [Ca(2+)](i) in renal tubular cells with an EC(50) of 8 microM. Collectively, the results show for the first time that TA-III causes [Ca(2+)](i) increases in the vascular system. TA-III acted by causing Ca(2+) influx without releasing intracellular Ca(2+). TA-III induced relaxation of phenylephrine-induced vascular contraction via inducing release of nitric oxide from endothelial cells.

Details

ISSN :
00243205
Volume :
71
Issue :
9
Database :
OpenAIRE
Journal :
Life sciences
Accession number :
edsair.doi.dedup.....dfb33378671909c9d964b1dfabe59e1e