Back to Search Start Over

RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in Arabidopsis thaliana

Authors :
Zhongliang Wu
Liang Chen
Ping Li
Jianming Deng
Suiwen Hou
Yan Chen
Xiaoping Gou
Jia Li
Mingfeng Zhao
Enrique Rojo
Jiangwei Luo
Lulu Zhao
Kai He
Bo Cheng
Sicheng Chen
Source :
New Phytologist. 230:171-189
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

RNA polymerase II (Pol II) associated proteins (RPAPs) have been ascribed diverse functions at the cellular level; however, their roles in developmental processes in yeasts, animals and plants are very poorly understood. Through screening for interactors of NRPB3, which encodes the third largest subunit of Pol II, we identified RIMA, the orthologue of mammalian RPAP2. A combination of genetic and biochemical assays revealed the role of RIMA and other RPAPs in stomatal development in Arabidopsis thaliana. We show that RIMA is involved in nuclear import of NRPB3 and other Pol II subunits, and is essential for restraining division and for establishing cell identity in the stomatal cell lineage. Moreover, plant RPAPs IYO/RPAP1 and QQT1/RPAP4, which interact with RIMA, are also crucial for stomatal development. Importantly, RIMA and QQT1 bind physically to stomatal transcription factors SPEECHLESS, MUTE, FAMA and SCREAMs. The RIMA-QQT1-IYO complex could work together with key stomatal transcription factors and Pol II to drive cell fate transitions in the stomatal cell lineage. Direct interactions with stomatal transcription factors provide a novel mechanism by which RPAP proteins may control differentiation of cell types and tissues in eukaryotes.

Details

ISSN :
14698137 and 0028646X
Volume :
230
Database :
OpenAIRE
Journal :
New Phytologist
Accession number :
edsair.doi.dedup.....df97c4486928873ed39f3207e0499bee
Full Text :
https://doi.org/10.1111/nph.17004