Back to Search Start Over

Chiral Polarization Textures Induced by the Flexoelectric Effect in Ferroelectric Nanocylinders

Authors :
Riccardo Hertel
Anna N. Morozovska
Eugene A. Eliseev
Dean R. Evans
Salia Cherifi-Hertel
Victor Yu. Reshetnyak
National Academy of Sciences of Ukraine (NASU)
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Taras Shevchenko National University of Kyiv
Institute for Materials Science Problems of NAS of Ukraine
Air Force Research Laboratory (AFRL)
United States Air Force (USAF)
ANR-18-CE92-0052,TOPELEC,Topologie de Parois Ferroélectriques Conductrices(2018)
Hertel, Riccardo
APPEL À PROJETS GÉNÉRIQUE 2018 - Topologie de Parois Ferroélectriques Conductrices - - TOPELEC2018 - ANR-18-CE92-0052 - AAPG2018 - VALID
Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE)
Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Materials Processing/Processing Science, Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLLMP
Wright-Patterson Air Force Base
Source :
Physical Review B, Physical Review B, 2021, 104 (5), pp.054118. ⟨10.1103/PhysRevB.104.054118⟩, Physical Review B, American Physical Society, 2021, 104, pp.054118. ⟨10.1103/PhysRevB.104.054118⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Polar chiral structures have recently attracted much interest within the scientific community, as they pave the way towards innovative device concepts similar to the developments achieved in nanomagnetism. Despite the growing interest, many fundamental questions related to the mechanisms controlling the appearance and stability of ferroelectric topological structures remain open. In this context, ferroelectric nanoparticles provide a flexible playground for such investigations. Here, we present a theoretical study of ferroelectric polar textures in a cylindrical core-shell nanoparticle. The calculations reveal a chiral polarization structure containing two oppositely oriented diffuse axial domains located near the cylinder ends, separated by a region with a zero-axial polarization. We name this polarization configuration "flexon" to underline the flexoelectric nature of its axial polarization. Analytical calculations and numerical simulation results show that the flexon's chirality can be switched by reversing the sign of the flexoelectric coefficient. Furthermore, the anisotropy of the flexoelectric coupling is found to critically influence the polarization texture and domain morphology. The flexon rounded shape, combined with its distinct chiral properties and the localization nature near the surface, are reminiscent of Chiral Bobber structures in magnetism. In the azimuthal plane, the flexon displays the polarization state of a vortex with an axially polarized core region, i.e., a meron. The flexoelectric effect, which couples the electric polarization and elastic strain gradients, plays a determining role in the stabilization of these chiral states. We discuss similarities between this interaction and the recently predicted ferroelectric Dyzaloshinskii-Moriya interaction leading to chiral polarization states.<br />Comment: 53 pages, 5 figures, supplementary materials on 31 pages

Details

ISSN :
24699950 and 24699969
Database :
OpenAIRE
Journal :
Physical Review B, Physical Review B, 2021, 104 (5), pp.054118. ⟨10.1103/PhysRevB.104.054118⟩, Physical Review B, American Physical Society, 2021, 104, pp.054118. ⟨10.1103/PhysRevB.104.054118⟩
Accession number :
edsair.doi.dedup.....df636f19720db43bb6f9e16caeae2e78
Full Text :
https://doi.org/10.48550/arxiv.2104.00598