Back to Search
Start Over
Blow up for the critical gKdV equation III: exotic regimes
- Source :
- Annali della Scuola Normale Superiore di Pisa, Annali della Scuola Normale Superiore di Pisa, 2015, XIV, pp.575-631, Annali della Scuola Normale Superiore di Pisa, 2015, 2, pp.575-631. ⟨10.2422/2036-2145.201209_004⟩
- Publication Year :
- 2015
- Publisher :
- Scuola Normale Superiore - Edizioni della Normale, 2015.
-
Abstract
- International audience; We consider the blow up problem in the energy space for the critical (gKdV) equation in the continuation of part I and part II. We know from part I that the unique and stable blow up rate for solutions close to the solitons with strong decay on the right is $1/t$. In this paper, we construct non-generic blow up regimes in the energy space by considering initial data with explicit slow decay on the right in space. We obtain finite time blow up solutions with speed $t^{-\nu}$ where $ \nu>11/13,$ as well as global in time growing up solutions with both exponential growth or power growth. These solutions can be taken with initial data arbitrarily close to the ground state solitary wave.
- Subjects :
- Mathematics::Analysis of PDEs
Space (mathematics)
Theoretical Computer Science
Continuation
Mathematics - Analysis of PDEs
Mathematics (miscellaneous)
Exponential growth
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
[MATH]Mathematics [math]
[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP]
Finite time
Ground state
Energy (signal processing)
Analysis of PDEs (math.AP)
Mathematics
Mathematical physics
Subjects
Details
- ISSN :
- 20362145 and 0391173X
- Database :
- OpenAIRE
- Journal :
- ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
- Accession number :
- edsair.doi.dedup.....df5ed1660b027bf979b843e087343be2
- Full Text :
- https://doi.org/10.2422/2036-2145.201209_004