Back to Search
Start Over
LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1
- Source :
- Journal of Experimental & Clinical Cancer Research, Vol 40, Iss 1, Pp 1-18 (2021), Journal of Experimental & Clinical Cancer Research : CR
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- BackgroundMetastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis.MethodsEVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo.ResultsWe found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo.ConclusionsOur findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.
- Subjects :
- G3BP1
0301 basic medicine
Cancer Research
medicine.medical_treatment
Mice, SCID
Carcinoma, Ovarian Epithelial
lcsh:RC254-282
Metastasis
Targeted therapy
Small hairpin RNA
Mice
03 medical and health sciences
0302 clinical medicine
Ovarian cancer
Cell Line, Tumor
medicine
Animals
Humans
RNA, Antisense
Neoplasm Metastasis
Poly-ADP-Ribose Binding Proteins
Peritoneal Neoplasms
Ovarian Neoplasms
Chemistry
Research
DNA Helicases
Extracellular vesicles
lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
medicine.disease
In vitro
SPOCD1-AS
Mesothelial-to-mesenchymal transition
RNA Recognition Motif Proteins
030104 developmental biology
Oncology
Apoptosis
030220 oncology & carcinogenesis
Peritoneal metastasis
Cancer cell
Cancer research
Heterografts
Female
RNA, Long Noncoding
Interfering peptides
RNA Helicases
Mesothelial Cell
Subjects
Details
- ISSN :
- 17569966
- Volume :
- 40
- Database :
- OpenAIRE
- Journal :
- Journal of Experimental & Clinical Cancer Research
- Accession number :
- edsair.doi.dedup.....df59589ba54f81849039c54897a05608
- Full Text :
- https://doi.org/10.1186/s13046-021-01899-6