Back to Search
Start Over
Adaptive Robust Local Online Density Estimation for Streaming Data
- Source :
- Int J Mach Learn Cybern
- Publication Year :
- 2021
-
Abstract
- Accurate online density estimation is crucial to numerous applications that are prevalent with streaming data. Existing online approaches for density estimation somewhat lack prompt adaptability and robustness when facing concept-drifting and noisy streaming data, resulting in delayed or even deteriorated approximations. To alleviate this issue, in this work, we first propose an adaptive local online kernel density estimator (ALoKDE) for real-time density estimation on data streams. ALoKDE consists of two tightly integrated strategies: (1) a statistical test for concept drift detection and (2) an adaptive weighted local online density estimation when a drift does occur. Specifically, using a weighted form, ALoKDE seeks to provide an unbiased estimation by factoring in the statistical hallmarks of the latest learned distribution and any potential distributional changes that could be introduced by each incoming instance. A robust variant of ALoKDE, i.e., R-ALoKDE, is further developed to effectively handle data streams with varied types/levels of noise. Moreover, we analyze the asymptotic properties of ALoKDE and R-ALoKDE, and also derive their theoretical error bounds regarding bias, variance, MSE and MISE. Extensive comparative studies on various artificial and real-world (noisy) streaming data demonstrate the efficacies of ALoKDE and R-ALoKDE in online density estimation and real-time classification (with noise).
- Subjects :
- Concept drift
Data stream mining
Computer science
Kernel density estimation
02 engineering and technology
Density estimation
Ensemble learning
Article
Noise
Artificial Intelligence
Robustness (computer science)
020204 information systems
0202 electrical engineering, electronic engineering, information engineering
020201 artificial intelligence & image processing
Computer Vision and Pattern Recognition
Algorithm
Software
Statistical hypothesis testing
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Int J Mach Learn Cybern
- Accession number :
- edsair.doi.dedup.....df101d6b154f155518f1c1a07001c093