Back to Search
Start Over
Heme Oxygenase-1-derived Carbon Monoxide Induces the Mycobacterium tuberculosis Dormancy Regulon
- Source :
- Journal of Biological Chemistry. 283:18032-18039
- Publication Year :
- 2008
- Publisher :
- Elsevier BV, 2008.
-
Abstract
- The mechanisms that allow Mycobacterium tuberculosis (Mtb) to persist in human tissue for decades and to then abruptly cause disease are not clearly understood. Regulatory elements thought to assist Mtb to enter such a state include the heme two-component sensor kinases DosS and DosT and the cognate response regulator DosR. We have demonstrated previously that O2, nitric oxide (NO), and carbon monoxide (CO) are regulatory ligands of DosS and DosT. Here, we show that in addition to O2 and NO, CO induces the complete Mtb dormancy (Dos) regulon. Notably, we demonstrate that CO is primarily sensed through DosS to induce the Dos regulon, whereas DosT plays a less prominent role. We also show that Mtb infection of macrophage cells significantly increases the expression, protein levels, and enzymatic activity of heme oxygenase-1 (HO-1, the enzyme that produces CO), in an NO-independent manner. Furthermore, exploiting HO-1+/+ and HO-1-/- bone marrow-derived macrophages, we demonstrate that physiologically relevant levels of CO induce the Dos regulon. Finally, we demonstrate that increased HO-1 mRNA and protein levels are produced in the lungs of Mtb-infected mice. Our data suggest that during infection, O2, NO, and CO are being sensed concurrently rather than independently via DosS and DosT. We conclude that CO, a previously unrecognized host factor, is a physiologically relevant Mtb signal capable of inducing the Dos regulon, which introduces a new paradigm for understanding the molecular basis of Mtb persistence.
- Subjects :
- Protamine Kinase
Biology
Models, Biological
Biochemistry
Mice
chemistry.chemical_compound
Bacterial Proteins
Animals
Molecular Biology
Heme
Oligonucleotide Array Sequence Analysis
Host factor
Regulation of gene expression
Carbon Monoxide
Mice, Inbred C3H
Kinase
Macrophages
Mechanisms of Signal Transduction
Gene Expression Regulation, Bacterial
Mycobacterium tuberculosis
Cell Biology
Mice, Inbred C57BL
Oxygen
Heme oxygenase
Response regulator
Regulon
Gene Expression Regulation
chemistry
Signal transduction
Heme Oxygenase-1
Signal Transduction
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 283
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....decfba2ad91129fd3bc603c387edc841
- Full Text :
- https://doi.org/10.1074/jbc.m802274200