Back to Search
Start Over
Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate)
- Source :
- Biomaterials. 23:4373-4380
- Publication Year :
- 2002
- Publisher :
- Elsevier BV, 2002.
-
Abstract
- The effect of temporary encapsulation of rat marrow stromal osteoblasts in crosslinked gelatin microparticles on cell viability and proliferation was investigated in this study for microparticles placed on a crosslinking poly(propylene fumarate) (PPF) composite over a 7 day time period. Encapsulated cells were seeded on crosslinking PPF composites at times up to 10 min following initiation of the crosslinking reaction, and also on fully crosslinked PPF composites and tissue culture polystyrene controls, with a cell seeding density of 5.3 x 10(4) cells/cm2. The crosslinked PPF composite exhibited an average gel point of 10.3 min and an average maximum crosslinking temperature of 47.5 degrees C. Cell viability and proliferation were assessed by DNA and 3H-thymidine assays and the results were compared with those for nonencapsulated cells. The results showed that the addition time of cells to a crosslinking PPF composite had a large effect on cell viability and proliferation for both encapsulated and nonencapsulated cells with more surviving cells added at later time points. Most importantly, the temporary encapsulation of cells significantly enhanced cell viability at earlier time points. The data indicate that the presence of gelatin microparticles does not affect the crosslinking of a PPF composite. They further suggest that the temporary encapsulation of cells in crosslinked gelatin microparticles may preserve the viability of cells contained in an actively crosslinking PPF composite used as an injectable polymeric scaffold serving also as a carrier for osteogenic cell populations.
- Subjects :
- In situ
Time Factors
Materials science
Stromal cell
food.ingredient
Cell Survival
Polymers
Drug Compounding
Osteocalcin
Composite number
Biophysics
Tetrazolium Salts
Biocompatible Materials
Bioengineering
macromolecular substances
Polypropylenes
Gelatin
Injections
Rats, Sprague-Dawley
Biomaterials
Poly(propylene fumarate)
Drug Delivery Systems
food
Fumarates
Osteogenic cell
Animals
Viability assay
Coloring Agents
Chromatography
Osteoblasts
Tissue Engineering
Temperature
technology, industry, and agriculture
DNA
Tissue culture polystyrene
Alkaline Phosphatase
Rats
Thiazoles
Cross-Linking Reagents
Phenotype
Mechanics of Materials
Bone Substitutes
Ceramics and Composites
Gels
Cell Division
Thymidine
Biomedical engineering
Subjects
Details
- ISSN :
- 01429612
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- Biomaterials
- Accession number :
- edsair.doi.dedup.....dec28f0929de51e95b99465579ad2b0f
- Full Text :
- https://doi.org/10.1016/s0142-9612(02)00185-0