Back to Search
Start Over
Dynamic pathway of the photoinduced phase transition of TbMnO$_3$
- Source :
- Physical Review B, 96 (18), Physical Review B
- Publication Year :
- 2017
-
Abstract
- We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO3 by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. The use of orthogonal linear x-ray polarizations provides information on the contribution from the different magnetic moment directions, which can be interpreted as signatures from multiferroic cycloidal spin order and sinusoidal spin order. Tracking these signatures in the time domain enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond time scale. The transient phase is shown to exhibit mostly spin density wave character, as in the adiabatic case, while nevertheless retaining the wave vector of the cycloidal long-range order. Two different pump photon energies, 1.55 and 3.1 eV, lead to population of the conduction band predominantly via intersite d-d or intrasite p-d transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a time scale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic order and orbital reconstruction. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such theoretical studies.
- Subjects :
- Physics
Phase transition
education.field_of_study
Photon
Strongly Correlated Electrons (cond-mat.str-el)
Condensed matter physics
Population
Phase (waves)
FOS: Physical sciences
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
Photoexcitation
Condensed Matter - Strongly Correlated Electrons
0103 physical sciences
Spin density wave
010306 general physics
0210 nano-technology
Spin (physics)
education
Excitation
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Physical Review B, 96 (18), Physical Review B
- Accession number :
- edsair.doi.dedup.....dec194e1173e8f2d5292b5d6b5c9af6c