Back to Search
Start Over
Evolution of default genetic control mechanisms
- Source :
- PLoS ONE, PLoS ONE, Vol 16, Iss 5, p e0251568 (2021), Plos One
- Publication Year :
- 2021
- Publisher :
- Public Library of Science, 2021.
-
Abstract
- We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. 118 runs of the model run to an average of 1.4 x 10^6 `generations' each with a range of starting parameters probed the conditions under which genomes evolved a `default style' of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active (`default on'), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated (`default off' logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a `default off' mode.<br />25 pages, 8 figures, 1 table
- Subjects :
- Evolutionary Genetics
Science
Gene Expression
Genomics
Computational biology
Biology
Genome Complexity
Genome
Evolution, Molecular
Invertebrate Genomics
Genetics
Coding region
Animals
Humans
Quantitative Biology - Genomics
Gene Regulation
Control logic
Gene
Genomics (q-bio.GN)
Evolutionary Biology
Multidisciplinary
Fitness function
Models, Genetic
Human evolutionary genetics
Organisms
Biology and Life Sciences
Computational Biology
Eukaryota
Gene Expression Regulation
Animal Genomics
FOS: Biological sciences
Control system
Medicine
Gene-Environment Interaction
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Database :
- OpenAIRE
- Journal :
- PLoS ONE, PLoS ONE, Vol 16, Iss 5, p e0251568 (2021), Plos One
- Accession number :
- edsair.doi.dedup.....de7c3fb34d5b711054783cde8b2c66c9