Back to Search Start Over

Co-divergence and tree topology

Authors :
Angelo Monti
Tiziana Calamoneri
Blerina Sinaimeri
Department of Informatics and System Sciences (Sapienza University of Rome)
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA)
Equipe de recherche européenne en algorithmique et biologie formelle et expérimentale (ERABLE)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Baobab
Département PEGASE [LBBE] (PEGASE)
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
Source :
Journal of Mathematical Biology, Journal of Mathematical Biology, 2019, 79 (3), pp.1149-1167. ⟨10.1007/s00285-019-01385-w⟩, Journal of Mathematical Biology, Springer Verlag (Germany), 2019, 79 (3), pp.1149-1167. ⟨10.1007/s00285-019-01385-w⟩
Publication Year :
2018

Abstract

In reconstructing the common evolutionary history of hosts and parasites, the current method of choice is the phylogenetic tree reconciliation. In this model, we are given a host tree H, a parasite tree P, and a function [Formula: see text] mapping the leaves of P to the leaves of H and the goal is to find, under some biologically motivated constraints, a reconciliation, that is a function from the vertices of P to the vertices of H that respects [Formula: see text] and allows the identification of biological events such as co-speciation, duplication and host switch. The maximum co-divergence problem consists in finding the maximum number of co-speciations in a reconciliation. This problem is NP-hard for arbitrary phylogenetic trees and no approximation algorithm is known. In this paper we consider the influence of tree topology on the maximum co-divergence problem. In particular we focus on a particular tree structure, namely caterpillar, and show that-in this case-the heuristics that are mostly used in the literature provide solutions that can be arbitrarily far from the optimal value. Then, we prove that finding the max co-divergence is equivalent to compute the maximum length of a subsequence with certain properties of a given permutation. This equivalence leads to two consequences: (1) it shows that we can compute efficiently in polynomial time the optimal time-feasible reconciliation and (2) it can be used to understand how much the tree topology influences the value of the maximum number of co-speciations.

Details

ISSN :
14321416 and 03036812
Volume :
79
Issue :
3
Database :
OpenAIRE
Journal :
Journal of mathematical biology
Accession number :
edsair.doi.dedup.....de74cb1f7b3e1dd33507b93071b77c99
Full Text :
https://doi.org/10.1007/s00285-019-01385-w⟩