Back to Search Start Over

Machine Learning-enhanced Receive Processing for MU-MIMO OFDM Systems

Authors :
Jakob Hoydis
Mathieu Goutay
Jean-Marie Gorce
Fayçal Ait Aoudia
Nokia Bell Labs [Nozay]
Modèle et algorithmes pour des systèmes de communication fiables (MARACAS)
CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
Source :
SPAWC 2021-IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2021-IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Sep 2021, Lucca, Italy. pp.1-4, ⟨10.1109/SPAWC51858.2021.9593152⟩, SPAWC
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Machine learning (ML) can be used in various ways to improve multi-user multiple-input multiple-output (MU-MIMO) receive processing. Typical approaches either augment a single processing step, such as symbol detection, or replace multiple steps jointly by a single neural network (NN). These techniques demonstrate promising results but often assume perfect channel state information (CSI) or fail to satisfy the interpretability and scalability constraints imposed by practical systems. In this paper, we propose a new strategy which preserves the benefits of a conventional receiver, but enhances specific parts with ML components. The key idea is to exploit the orthogonal frequency-division multiplexing (OFDM) signal structure to improve both the demapping and the computation of the channel estimation error statistics. Evaluation results show that the proposed ML-enhanced receiver beats practical baselines on all considered scenarios, with significant gains at high speeds.

Details

Language :
English
Database :
OpenAIRE
Journal :
SPAWC 2021-IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2021-IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Sep 2021, Lucca, Italy. pp.1-4, ⟨10.1109/SPAWC51858.2021.9593152⟩, SPAWC
Accession number :
edsair.doi.dedup.....de6b7d0abebae5b35eda0f651b1b85ad