Back to Search
Start Over
GiGAn: Evolutionary Mutation Testing for C++ Object-Oriented Systems
- Source :
- SAC '17: Proceedings of the Symposium on Applied Computing, April 2017 Pages 1387–1392, RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, instname, SAC
- Publication Year :
- 2017
- Publisher :
- ACM: Association for Computing Machinery, 2017.
-
Abstract
- The reduction of the expenses of mutation testing should be based on well-studied cost reduction techniques to avoid bi ased results. Evolutionary Mutation Testing (EMT) aims at generating a reduced set of mutants by means of an evolu tionary algorithm, which searches for potentially equivalent and difficult to kill mutants to help improve the test suite. However, there is little evidence of its applicability to other contexts beyond WS-BPEL compositions. This study ex plores its performance when applied to C++ object-oriented programs thanks to a newly developed system, GiGAn. The conducted experiments reveal that EMT shows stable be havior in all the case studies, where the best results are ob tained when a low percentage of the mutants is generated. They also support previous studies of EMT when compared to random mutant selection, reinforcing its use for the goal of improving the fault detection capability of the test suite. Universidad de Cádiz PU-EPIF-FPI-PPI-BC 2012-037 Ministerio de Economía y Competitividad TIN2015-65845-C3-3-R (DarDos) Ministerio de Economía y Competitividad TIN2015-70560-R (BELI) Ministerio de Ciencia, Innovación y Universidades TIN2015-71841-REDT (SEBASEnet) Junta de Andalucía P12-TIC-1867 (COPAS)
- Subjects :
- Computer science
Evolutionary algorithm
Mutation testing
02 engineering and technology
Evolutionary computation
Machine learning
computer.software_genre
Fault detection and isolation
Reduction (complexity)
Object orientation
0502 economics and business
Genetic algorithm
0202 electrical engineering, electronic engineering, information engineering
Test suite
genetic algorithm
Selection (genetic algorithm)
C++
business.industry
05 social sciences
020207 software engineering
Genetic algorithms
Artificial intelligence
business
computer
050203 business & management
Subjects
Details
- Language :
- English
- ISBN :
- 978-1-4503-4486-9
- ISBNs :
- 9781450344869
- Database :
- OpenAIRE
- Journal :
- SAC '17: Proceedings of the Symposium on Applied Computing, April 2017 Pages 1387–1392, RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz, instname, SAC
- Accession number :
- edsair.doi.dedup.....de4cc349b9c917975f77bec27fb81c84