Back to Search Start Over

A no-reference respiratory blur estimation index in nuclear medicine for image quality assessment

Authors :
Sofiane Guendouzen
Nicolas Passat
D. Morland
Dimitri Papathanassiou
Paul Lalire
Département de Médecine Nucléaire, Institut Jean Godinot
Centre de Recherche en Sciences et Technologies de l'Information et de la Communication - EA 3804 (CRESTIC)
Université de Reims Champagne-Ardenne (URCA)
Laboratoire de Biophysique, UFR de médecine, Université de Reims Champagne Ardenne, Reims, France
Physique Médicale, Institut Godinot, Reims, France
Institut Jean Godinot [Reims]
UNICANCER-UNICANCER
Source :
Medicine, Medicine, Lippincott, Williams & Wilkins, 2019, 98 (48), pp.e18207. ⟨10.1097/MD.0000000000018207⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Background - Few indexes are available for nuclear medicine image quality assessment, particularly for respiratory blur assessment. A variety of methods for the identification of blur parameters has been proposed in literature mostly for photographic pictures but these methods suffer from a high sensitivity to noise, making them unsuitable to evaluate nuclear medicine images. In this paper, we aim to calibrate and test a new blur index to assess image quality.Material and Methods – Blur index calibration was evaluated by numerical simulation for various lesions size and intensity of uptake. Calibrated blur index was then tested on gamma- camera phantom acquisitions, PET phantom acquisitions and real-patient PET images and compared to human visual evaluation.Results – For an optimal filter parameter of 9, non-weighted and weighted blur index led to an automated classification close to the human one in phantom experiments and identified each time the sharpest image in all the 40 datasets of four images. Weighted blur index was significantly correlated to human classification (ρ= 0.69 [0.45 ;0.84], p

Details

Language :
English
ISSN :
00257974 and 15365964
Database :
OpenAIRE
Journal :
Medicine, Medicine, Lippincott, Williams & Wilkins, 2019, 98 (48), pp.e18207. ⟨10.1097/MD.0000000000018207⟩
Accession number :
edsair.doi.dedup.....ddc99615e931e7207e2da6af9c010ad6
Full Text :
https://doi.org/10.1097/MD.0000000000018207⟩