Back to Search Start Over

Constraining High-energy Neutrino Emission from Supernovae with IceCube

Authors :
IceCube Collaboration
Abbasi, R.
Ackermann, M.
Adams, J.
Agarwalla, S. K.
Aguilar, J. A.
Ahlers, M.
Alameddine, J. M.
Amin, N. M.
Andeen, K.
Anton, G.
Argüelles, C.
Ashida, Y.
Athanasiadou, S.
Axani, S. N.
Bai, X.
V., A. Balagopal
Baricevic, M.
Barwick, S. W.
Basu, V.
Bay, R.
Beatty, J. J.
Becker, K.-H.
Tjus, J. Becker
Beise, J.
Bellenghi, C.
BenZvi, S.
Berley, D.
Bernardini, E.
Besson, D. Z.
Binder, G.
Bindig, D.
Blaufuss, E.
Blot, S.
Bontempo, F.
Book, J. Y.
Meneguolo, C. Boscolo
Böser, S.
Botner, O.
Böttcher, J.
Bourbeau, E.
Braun, J.
Brinson, B.
Brostean-Kaiser, J.
Burley, R. T.
Busse, R. S.
Butterfield, D.
Campana, M. A.
Carloni, K.
Carnie-Bronca, E. G.
Chattopadhyay, S.
Chen, C.
Chen, Z.
Chirkin, D.
Choi, S.
Clark, B. A.
Classen, L.
Coleman, A.
Collin, G. H.
Connolly, A.
Conrad, J. M.
Coppin, P.
Correa, P.
Countryman, S.
Cowen, D. F.
Dave, P.
De Clercq, C.
DeLaunay, J. J.
Delgado López, D.
Dembinski, H.
Deoskar, K.
Desai, A.
Desiati, P.
de Vries, K. D.
de Wasseige, G.
DeYoung, T.
Diaz, A.
Díaz-Vélez, J. C.
Dittmer, M.
Domi, A.
Dujmovic, H.
DuVernois, M. A.
Ehrhardt, T.
Eller, P.
Engel, R.
Erpenbeck, H.
Evans, J.
Evenson, P. A.
Fan, K. L.
Fang, K.
Fazely, A. R.
Fedynitch, A.
Feigl, N.
Fiedlschuster, S.
Finley, C.
Fischer, L.
Fox, D.
Franckowiak, A.
Friedman, E.
Fritz, A.
Fürst, P.
Gaisser, T. K.
Gallagher, J.
Ganster, E.
Garcia, A.
Garrappa, S.
Gerhardt, L.
Ghadimi, A.
Glaser, C.
Glauch, T.
Glüsenkamp, T.
Goehlke, N.
Gonzalez, J. G.
Goswami, S.
Grant, D.
Gray, S. J.
Griffin, S.
Griswold, S.
Günther, C.
Gutjahr, P.
Haack, C.
Hallgren, A.
Halliday, R.
Halve, L.
Halzen, F.
Hamdaoui, H.
Minh, M. Ha
Hanson, K.
Hardin, J.
Harnisch, A. A.
Hatch, P.
Haungs, A.
Helbing, K.
Hellrung, J.
Henningsen, F.
Heuermann, L.
Hickford, S.
Hidvegi, A.
Hill, C.
Hill, G. C.
Hoffman, K. D.
Hoshina, K.
Hou, W.
Huber, T.
Hultqvist, K.
Hünnefeld, M.
Hussain, R.
Hymon, K.
In, S.
Iovine, N.
Ishihara, A.
Jacquart, M.
Jansson, M.
Japaridze, G. S.
Jayakumar, K.
Jeong, M.
Jin, M.
Jones, B. J. P.
Kang, D.
Kang, W.
Kang, X.
Kappes, A.
Kappesser, D.
Kardum, L.
Karg, T.
Karl, M.
Karle, A.
Katz, U.
Kauer, M.
Kelley, J. L.
Zathul, A. Khatee
Kheirandish, A.
Kin, K.
Kiryluk, J.
Klein, S. R.
Kochocki, A.
Koirala, R.
Kolanoski, H.
Kontrimas, T.
Köpke, L.
Kopper, C.
Koskinen, D. J.
Koundal, P.
Kovacevich, M.
Kowalski, M.
Kozynets, T.
Kruiswijk, K.
Krupczak, E.
Kumar, A.
Kun, E.
Kurahashi, N.
Lad, N.
Lagunas Gualda, C.
Lamoureux, M.
Larson, M. J.
Lauber, F.
Lazar, J. P.
Lee, J. W.
DeHolton, K. Leonard
Leszczyńska, A.
Lincetto, M.
Liu, Q. R.
Liubarska, M.
Lohfink, E.
Love, C.
Mariscal, C. J. Lozano
Lu, L.
Lucarelli, F.
Ludwig, A.
Luszczak, W.
Lyu, Y.
Ma, W. Y.
Madsen, J.
Mahn, K. B. M.
Makino, Y.
Mancina, S.
Sainte, W. Marie
Mariş, I. C.
Marka, S.
Marka, Z.
Marsee, M.
Martinez-Soler, I.
Maruyama, R.
Mayhew, F.
McElroy, T.
McNally, F.
Mead, J. V.
Meagher, K.
Mechbal, S.
Medina, A.
Meier, M.
Meighen-Berger, S.
Merckx, Y.
Merten, L.
Micallef, J.
Mockler, D.
Montaruli, T.
Moore, R. W.
Morii, Y.
Morse, R.
Moulai, M.
Mukherjee, T.
Naab, R.
Nagai, R.
Nakos, M.
Naumann, U.
Necker, J.
Neumann, M.
Niederhausen, H.
Nisa, M. U.
Noell, A.
Nowicki, S. C.
Pollmann, A. Obertacke
O’Dell, V.
Oehler, M.
Oeyen, B.
Olivas, A.
Orsoe, R.
Osborn, J.
O’Sullivan, E.
Pandya, H.
Park, N.
Parker, G. K.
Paudel, E. N.
Paul, L.
de los Heros, C. Pérez
Peterson, J.
Philippen, S.
Pieper, S.
Pizzuto, A.
Plum, M.
Popovych, Y.
Prado Rodriguez, M.
Pries, B.
Procter-Murphy, R.
Przybylski, G. T.
Raab, C.
Rack-Helleis, J.
Rawlins, K.
Rechav, Z.
Rehman, A.
Reichherzer, P.
Renzi, G.
Resconi, E.
Reusch, S.
Rhode, W.
Richman, M.
Riedel, B.
Roberts, E. J.
Robertson, S.
Rodan, S.
Roellinghoff, G.
Rongen, M.
Rott, C.
Ruhe, T.
Ruohan, L.
Ryckbosch, D.
Safa, I.
Saffer, J.
Salazar-Gallegos, D.
Sampathkumar, P.
Sanchez Herrera, S. E.
Sandrock, A.
Santander, M.
Sarkar, S.
Savelberg, J.
Savina, P.
Schaufel, M.
Schieler, H.
Schindler, S.
Schlüter, B.
Schmidt, T.
Schneider, J.
Schröder, F. G.
Schumacher, L.
Schwefer, G.
Sclafani, S.
Seckel, D.
Seunarine, S.
Sharma, A.
Shefali, S.
Shimizu, N.
Silva, M.
Skrzypek, B.
Smithers, B.
Snihur, R.
Soedingrekso, J.
Søgaard, A.
Soldin, D.
Sommani, G.
Spannfellner, C.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stasik, A.
Stein, R.
Stezelberger, T.
Stürwald, T.
Stuttard, T.
Sullivan, G. W.
Taboada, I.
Ter-Antonyan, S.
Thompson, W. G.
Thwaites, J.
Tilav, S.
Tollefson, K.
Tönnis, C.
Toscano, S.
Tosi, D.
Trettin, A.
Tung, C. F.
Turcotte, R.
Twagirayezu, J. P.
Ty, B.
Unland Elorrieta, M. A.
Upadhyay, A. K.
Upshaw, K.
Valtonen-Mattila, N.
Vandenbroucke, J.
van Eijndhoven, N.
Vannerom, D.
van Santen, J.
Vara, J.
Veitch-Michaelis, J.
Venugopal, M.
Verpoest, S.
Veske, D.
Walck, C.
Watson, T. B.
Weaver, C.
Weigel, P.
Weindl, A.
Weldert, J.
Wendt, C.
Werthebach, J.
Weyrauch, M.
Whitehorn, N.
Wiebusch, C. H.
Willey, N.
Williams, D. R.
Wolf, M.
Wrede, G.
Wulff, J.
Xu, X. W.
Yanez, J. P.
Yildizci, E.
Yoshida, S.
Yu, F.
Yu, S.
Yuan, T.
Zhang, Z.
Zhelnin, P.
Publication Year :
2023
Publisher :
Karlsruher Institut für Technologie (KIT), 2023.

Abstract

Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae, and for combined emission from the whole supernova sample through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. The overall deviation of all tested scenarios from the background expectation yields a p-value of 93% which is fully compatible with background. The derived upper limits on the total energy emitted in neutrinos are 1.7×10$^{48}$ erg for stripped-envelope supernovae, 2.8×10$^{48}$ erg for type IIP, and 1.3×10$^{49}$ erg for type IIn SNe, the latter disfavouring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that strippe-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9% respectively to the diffuse neutrino flux in the energy range of about 10$^3$−10$^5$ GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions.

Subjects

Subjects :
Physics
ddc:530

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....dd928b00114003e4b7623607f1fb1d30
Full Text :
https://doi.org/10.5445/ir/1000159438