Back to Search
Start Over
CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites
- Source :
- Cimermancic, P; Weinkam, P; Rettenmaier, TJ; Bichmann, L; Keedy, DA; Woldeyes, RA; et al.(2016). CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. JOURNAL OF MOLECULAR BIOLOGY, 428(4), 709-719. doi: 10.1016/j.jmb.2016.01.029. UCSF: Retrieved from: http://www.escholarship.org/uc/item/1c75k2k8, Journal of molecular biology, vol 428, iss 4
- Publication Year :
- 2016
- Publisher :
- Elsevier BV, 2016.
-
Abstract
- Many proteins have small molecule-binding pockets that are not easily detectable in the ligand-free structures. These cryptic sites require a conformational change to become apparent; a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo structure. Because many proteins appear to lack druggable pockets, understanding and accurately identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites were identified experimentally by fragment-based ligand discovery, and computationally by long molecular dynamics simulations and fragment docking. Here, we begin by constructing a set of structurally defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the cryptic sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic sites tend to be as conserved in evolution as traditional binding pockets, but are less hydrophobic and more flexible. Relying on this characterization, we use machine learning to predict cryptic sites with relatively high accuracy (for our benchmark, the true positive and false positive rates are 73% and 29%, respectively). We then predict cryptic sites in the entire structurally characterized human proteome (11,201 structures, covering 23% of all residues in the proteome). CryptoSite increases the size of the potentially “druggable” human proteome from ~40% to ~78% of disease-associated proteins. Finally, to demonstrate the utility of our approach in practice, we experimentally validate a cryptic site in protein tyrosine phosphatase 1B using a covalent ligand and NMR spectroscopy. The CryptoSite web server is available at http://salilab.org/cryptosite.
- Subjects :
- 0301 basic medicine
Biochemistry & Molecular Biology
Conformational change
Proteome
Protein Conformation
Druggability
Computational biology
Biology
010402 general chemistry
Microbiology
01 natural sciences
Article
Vaccine Related
Machine Learning
Medicinal and Biomolecular Chemistry
03 medical and health sciences
Structural Biology
Human proteome project
Humans
cryptic binding sites
undruggable proteins
Binding site
Molecular Biology
Binding Sites
Protein dynamics
Proteins
Computational Biology
Molecular biology
0104 chemical sciences
A-site
machine learning
030104 developmental biology
Docking (molecular)
protein dynamics
Generic health relevance
Biochemistry and Cell Biology
Subjects
Details
- ISSN :
- 00222836
- Volume :
- 428
- Database :
- OpenAIRE
- Journal :
- Journal of Molecular Biology
- Accession number :
- edsair.doi.dedup.....dd6d6587e04bd3942f1acb82cdeab423
- Full Text :
- https://doi.org/10.1016/j.jmb.2016.01.029