Back to Search Start Over

A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil)

Authors :
C. Edgar
Włodzimierz Pawlak
Yao Gao
Dan J. Charman
Mahdi Nakhavali
Krzysztof Fortuniak
Noah Smith
Edward A. G. Schuur
Sebastian Westermann
Angela V. Gallego-Sala
Eleanor J. Burke
Sarah Chadburn
Eugénie S. Euskirchen
M. Syndonia Bret-Harte
Julia Drewer
Publication Year :
2021
Publisher :
Copernicus GmbH, 2021.

Abstract

Peatlands have often been neglected in Earth System Models (ESMs). Where they are included, they are usually represented via a separate, prescribed grid cell fraction that is given the physical characteristics of a peat (highly organic) soil. However, in reality soils vary on a spectrum between purely mineral soil (no organic material), and purely organic soil, typically with an organic layer of variable thickness overlying mineral soil below. They are also dynamic, with organic layer thickness and its properties changing over time. Neither the spectrum of soil types nor their dynamic nature can be captured by current ESMs. Here we present a new version of an ESM land surface scheme (Joint UK Land Environment Simulator, JULES) where soil organic matter accumulation - and thus peatland formation, degradation and stability – is integrated in the vertically-resolved soil carbon scheme. We also introduce the capacity to track soil carbon age as a function of depth in JULES, and compare this to measured peat age-depth profiles. This scheme simulates dynamic feedbacks between the soil organic material and its thermal and hydraulic characteristics. We show that draining the peatlands can lead to significant carbon loss along with soil compaction and changes in peat properties. However, negative feedbacks can lead to the potential for peatlands to rewet themselves following drainage. These ecohydrological feedbacks can also lead to peatlands maintaining themselves in climates where peat formation would not otherwise initiate in the model, i.e. displaying some degree of resilience. The new model produces similar results to the original model for mineral soils, and realistic profiles of soil organic carbon for peatlands. In particular the best performing configurations had root mean squared error (RMSE) in carbon density for peat sites of 7.7–16.7 kgC m−3 depending on climate zone, when compared against typical peat profiles based on 216 sites from a global dataset of peat cores. This error is considerably smaller than the soil carbon itself (around 30–60 kgC m−3) and reduced by 35–80 % compared with standard JULES. The RMSE at mineral soil sites is also smaller in JULES-Peat than JULES itself (reduced by ~30–50 %). Thus JULES-Peat can be used as a complete scheme that simulates both organic and mineral soils. It does not require any additional input data and introduces minimal additional variables to the model. This provides a new approach for improving the simulation of organic and peatland soils, and associated carbon-cycle feedbacks in ESMs, which other land surface models could follow.

Details

ISSN :
19919603
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....dd57dfa33ef9de9b9ed76c535af54869