Back to Search
Start Over
Colliding respiratory jets as a mechanism of air exchange and pathogen transport during conversations
- Source :
- Journal of Fluid Mechanics, Journal of Fluid Mechanics, 2021, 930, pp.R1. ⟨10.1017/jfm.2021.915⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- International audience; Air exchange between people has emerged in the COVID-19 pandemic as the important vector for transmission of the SARS-CoV-2 virus. We study the airflow and exchange between two unmasked individuals conversing face-to-face at short range, which can potentially transfer a high dose of a pathogen, because the dilution is small when compared to long-range airborne transmission. We conduct flow visualization experiments and direct numerical simulations of colliding respiratory jets mimicking the initial phase of a conversation. The evolution and dynamics of the jets are affected by the vertical offset between the mouths of the speakers. At low offsets the head-on collision of jets results in a 'blocking effect', temporarily shielding the susceptible speaker from the pathogen carrying jet, although, the lateral spread of the jets is enhanced. Sufficiently large offsets prevent the interaction of the jets. At intermediate offsets (8-10 cm for 1 m separation), jet entrainment and the inhaled breath assist the transport of the pathogen-loaded saliva droplets towards the susceptible speaker's mouth. Air exchange is expected, in spite of the blocking effect arising from the interaction of the respiratory jets from the two speakers.
- Subjects :
- Flow visualization
Physics
jets
Jet (fluid)
Mechanical Engineering
Applied Mathematics
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Air exchange
Airflow
Separation (aeronautics)
Mechanics
respiratory system
equipment and supplies
Condensed Matter Physics
complex mixtures
Airborne transmission
turbulent mixing
Mechanics of Materials
particle/fluid flow
[PHYS.MECA.MEFL] Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Entrainment (chronobiology)
circulatory and respiratory physiology
Subjects
Details
- Language :
- English
- ISSN :
- 00221120 and 14697645
- Database :
- OpenAIRE
- Journal :
- Journal of Fluid Mechanics, Journal of Fluid Mechanics, 2021, 930, pp.R1. ⟨10.1017/jfm.2021.915⟩
- Accession number :
- edsair.doi.dedup.....dd26fcccb9d74ffce6c0857d2be5ac92