Back to Search Start Over

Colliding respiratory jets as a mechanism of air exchange and pathogen transport during conversations

Authors :
Simon Mendez
Nan Xue
Neelakash Biswas
Howard A. Stone
Manouk Abkarian
Arghyanir Giri
Danielle L. Chase
Sandeep Saha
Mendez, Simon
Indian Institute of Technology Kharagpur (IIT Kharagpur)
Department of Mechanical and Aerospace Engineering [Princeton] (MAE)
Princeton University
Centre de Biochimie Structurale [Montpellier] (CBS)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Fluid Mechanics, Journal of Fluid Mechanics, 2021, 930, pp.R1. ⟨10.1017/jfm.2021.915⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Air exchange between people has emerged in the COVID-19 pandemic as the important vector for transmission of the SARS-CoV-2 virus. We study the airflow and exchange between two unmasked individuals conversing face-to-face at short range, which can potentially transfer a high dose of a pathogen, because the dilution is small when compared to long-range airborne transmission. We conduct flow visualization experiments and direct numerical simulations of colliding respiratory jets mimicking the initial phase of a conversation. The evolution and dynamics of the jets are affected by the vertical offset between the mouths of the speakers. At low offsets the head-on collision of jets results in a 'blocking effect', temporarily shielding the susceptible speaker from the pathogen carrying jet, although, the lateral spread of the jets is enhanced. Sufficiently large offsets prevent the interaction of the jets. At intermediate offsets (8-10 cm for 1 m separation), jet entrainment and the inhaled breath assist the transport of the pathogen-loaded saliva droplets towards the susceptible speaker's mouth. Air exchange is expected, in spite of the blocking effect arising from the interaction of the respiratory jets from the two speakers.

Details

Language :
English
ISSN :
00221120 and 14697645
Database :
OpenAIRE
Journal :
Journal of Fluid Mechanics, Journal of Fluid Mechanics, 2021, 930, pp.R1. ⟨10.1017/jfm.2021.915⟩
Accession number :
edsair.doi.dedup.....dd26fcccb9d74ffce6c0857d2be5ac92