Back to Search
Start Over
New upper bounds to the limitedness of distance automata
- Source :
- Theoretical Computer Science. 233:19-32
- Publication Year :
- 2000
- Publisher :
- Elsevier BV, 2000.
-
Abstract
- A distance automaton is a finite nondeterministic automaton with a distance function which assigns zero or one to each atomic transition and assigns a nonnegative integer to each accepted word by the plus-min principle. In this paper, we prove that the distances of all accepted words of a distance automaton is bounded by some constant if and only if they are bounded by 2 4m 3 +m log (m+2)+m , where m is the number of states of the automaton.
- Subjects :
- Discrete mathematics
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES
General Computer Science
Linear bounded automaton
Levenshtein automaton
Continuous automaton
Büchi automaton
Nonlinear Sciences::Cellular Automata and Lattice Gases
Theoretical Computer Science
Combinatorics
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
Deterministic automaton
Probabilistic automaton
Two-way deterministic finite automaton
Nondeterministic finite automaton
Computer Science::Formal Languages and Automata Theory
Computer Science(all)
Mathematics
Subjects
Details
- ISSN :
- 03043975
- Volume :
- 233
- Database :
- OpenAIRE
- Journal :
- Theoretical Computer Science
- Accession number :
- edsair.doi.dedup.....dd0d6c14cfa5eaff2b813f0c84951fa6
- Full Text :
- https://doi.org/10.1016/s0304-3975(97)00260-0