Back to Search Start Over

Characterization of Osteogenesis and Chondrogenesis of Human Decellularized Allogeneic Bone with Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Wharton’s Jelly

Authors :
Wei Ming Chen
Yi Chun Chen
Ming Chau Chang
Chao Ming Chen
Po Kuei Wu
Cheng Fong Chen
Shang Wen Tsai
Yu Show Fu
Source :
International Journal of Molecular Sciences, Volume 22, Issue 16, International Journal of Molecular Sciences, Vol 22, Iss 8987, p 8987 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Allogeneic bone grafts are a promising material for bone implantation due to reduced operative trauma, reduced blood loss, and no donor-site morbidity. Although human decellularized allogeneic bone (hDCB) can be used to fill bone defects, the research of revitalizing hDCB blocks with human mesenchymal stem cells (hMSCs) for osteochondral regeneration is missing. The hMSCs derived from bone marrow, adipose tissue, and Wharton’s jelly (BMMSCs, ADMSCs, and UMSCs, respectively) are potential candidates for bone regeneration. This study characterized the potential of hDCB as a scaffold for osteogenesis and chondrogenesis of BMMSCs, ADMSCs, and UMSCs. The pore sizes and mechanical strength of hDCB were characterized. Cell survival and adhesion of hMSCs were investigated using MTT assay and F-actin staining. Alizarin Red S and Safranin O staining were conducted to demonstrate calcium deposition and proteoglycan production of hMSCs after osteogenic and chondrogenic differentiation, respectively. A RT-qPCR was performed to analyze the expression levels of osteogenic and chondrogenic markers in hMSCs. Results indicated that BMMSCs and ADMSCs exhibited higher osteogenic potential than UMSCs. Furthermore, ADMSCs and UMSCs had higher chondrogenic potential than BMMSCs. This study demonstrated that chondrogenic ADMSCs- or UMSCs-seeded hDCB might be potential osteochondral constructs for osteochondral regeneration.

Details

ISSN :
14220067
Volume :
22
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences
Accession number :
edsair.doi.dedup.....dcea1e49785e140350003a6385de7a0c
Full Text :
https://doi.org/10.3390/ijms22168987