Back to Search Start Over

Controllability implies mixing I. Convergence in the total variation metric

Authors :
Armen Shirikyan
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
National Research University, Moscow Power Engineering Institute
ANR-11-LABX-0023,MME-DII,Modèles Mathématiques et Economiques de la Dynamique, de l'Incertitude et des Interactions(2011)
Source :
Russian Mathematical Surveys, Russian Mathematical Surveys, Turpion, 2017, 72 (5), pp.939-953. ⟨10.1070/RM9755⟩
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

International audience; This paper is the first part of a project devoted to studying the interconnection between controllability properties of a dynamical system and the large-time asymptotics of trajectories for the associated stochastic system. It is proved that the approximate controllability to a given point and the solid controllability from the same point imply the uniqueness of a stationary measure and exponential mixing in the total variation metric. This result is then applied to random differential equations on a compact Riemannian manifold. In the second part, we shall replace the solid controllability by a stabilisability condition and prove that it is still sufficient for the uniqueness of a stationary distribution, whereas the convergence to it holds in the weaker dual-Lipschitz metric.

Details

ISSN :
00360279 and 14684829
Database :
OpenAIRE
Journal :
Russian Mathematical Surveys, Russian Mathematical Surveys, Turpion, 2017, 72 (5), pp.939-953. ⟨10.1070/RM9755⟩
Accession number :
edsair.doi.dedup.....dcb3ce6fd331760eaad34611fd33893a
Full Text :
https://doi.org/10.48550/arxiv.1803.01892