Back to Search Start Over

PIPE4: Fast PPI Predictor for Comprehensive Inter- and Cross-Species Interactomes

Authors :
Bahram Samanfar
Stephen J. Molnar
Kevin Dick
Bradley Barnes
Elroy R. Cober
James R. Green
Le Hoa Tan
Kyle K. Biggar
Ashkan Golshani
Frank Dehne
Benjamin Mimee
Source :
Scientific Reports, Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020)
Publication Year :
2019

Abstract

The need for larger-scale and increasingly complex protein-protein interaction (PPI) prediction tasks demands that state-of-the-art predictors be highly efficient and adapted to inter- and cross-species predictions. Furthermore, the ability to generate comprehensive interactomes has enabled the appraisal of each PPI in the context of all predictions leading to further improvements in classification performance in the face of extreme class imbalance using the Reciprocal Perspective (RP) framework. We here describe the PIPE4 algorithm. Adaptation of the PIPE3/MP-PIPE sequence preprocessing step led to upwards of 50x speedup and the new Similarity Weighted Score appropriately normalizes for window frequency when applied to any inter- and cross-species prediction schemas. Comprehensive interactomes for three prediction schemas are generated: (1) cross-species predictions, where Arabidopsis thaliana is used as a proxy to predict the comprehensive Glycine max interactome, (2) inter-species predictions between Homo sapiens-HIV1, and (3) a combined schema involving both cross- and inter-species predictions, where both Arabidopsis thaliana and Caenorhabditis elegans are used as proxy species to predict the interactome between Glycine max (the soybean legume) and Heterodera glycines (the soybean cyst nematode). Comparing PIPE4 with the state-of-the-art resulted in improved performance, indicative that it should be the method of choice for complex PPI prediction schemas.

Details

ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....dc9915eb43d9aeae3d75a321a68c3743