Back to Search Start Over

Pattern-tunable synthetic gauge fields in topological photonic graphene

Authors :
Zhen-Ting Huang
Kuo-Bin Hong
Ray-Kuang Lee
Laura Pilozzi
Claudio Conti
Jhih-Sheng Wu
Tien-Chang Lu
Source :
Nanophotonics (Berlin. Internet) 11 (2022): 1297–1308. doi:10.1515/nanoph-2021-0647, info:cnr-pdr/source/autori:Huang Z.-T.; Hong K.-B.; Lee R.-K.; Pilozzi L.; Conti C.; Wu J.-S.; Lu T.-C./titolo:Pattern-tunable synthetic gauge fields in topological photonic graphene/doi:10.1515%2Fnanoph-2021-0647/rivista:Nanophotonics (Berlin. Internet)/anno:2022/pagina_da:1297/pagina_a:1308/intervallo_pagine:1297–1308/volume:11
Publication Year :
2022
Publisher :
Walter de Gruyter GmbH, 2022.

Abstract

We propose a straightforward and effective approach to design, by pattern-tunable strain-engineering, photonic topological insulators supporting high quality factors edge states. Chiral strain-engineering creates opposite synthetic gauge fields in two domains resulting in Landau levels with the same energy spacing but different topological numbers. The boundary of the two topological domains hosts robust time-reversal and spin-momentum-locked edge states, exhibiting high quality factors due to continuous strain modulation. By shaping the synthetic gauge field, we obtain remarkable field confinement and tunability, with the strain strongly affecting the degree of localization of the edge states. Notably, the two-domain design stabilizes the strain-induced topological edge state. The large potential bandwidth of the strain-engineering and the opportunity to induce the mechanical stress at the fabrication stage enables large scalability for many potential applications in photonics, such as tunable microcavities, new lasers, and information processing devices, including the quantum regime.

Details

ISSN :
21928614
Volume :
11
Database :
OpenAIRE
Journal :
Nanophotonics
Accession number :
edsair.doi.dedup.....dc7b46030d2c148c436088eadc12f696
Full Text :
https://doi.org/10.1515/nanoph-2021-0647