Back to Search
Start Over
Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays
- Source :
- Proceedings of the National Academy of Sciences. 103:3816-3821
- Publication Year :
- 2006
- Publisher :
- Proceedings of the National Academy of Sciences, 2006.
-
Abstract
- The transport and catabolic machinery involved in carbohydrate utilization by Lactobacillus acidophilus was characterized genetically by using whole-genome cDNA microarrays. Global transcriptional profiles were determined for growth on glucose, fructose, sucrose, lactose, galactose, trehalose, raffinose, and fructooligosaccharides. Hybridizations were carried out by using a round-robin design, and microarray data were analyzed with a two-stage mixed model ANOVA. Differentially expressed genes were visualized by hierarchical clustering, volcano plots, and contour plots. Overall, only 63 genes (3% of the genome) showed a >4-fold induction. Specifically, transporters of the phospho enol pyruvate:sugar transferase system were identified for uptake of glucose, fructose, sucrose, and trehalose, whereas ATP-binding cassette transporters were identified for uptake of raffinose and fructooligosaccharides. A member of the LacS subfamily of galactoside-pentose hexuronide translocators was identified for uptake of galactose and lactose. Saccharolytic enzymes likely involved in the metabolism of monosaccharides, disaccharides, and polysaccharides into substrates of glycolysis were also found, including enzymatic machinery of the Leloir pathway. The transcriptome appeared to be regulated by carbon catabolite repression. Although substrate-specific carbohydrate transporters and hydrolases were regulated at the transcriptional level, genes encoding regulatory proteins CcpA, Hpr, HprK/P, and EI were consistently highly expressed. Genes central to glycolysis were among the most highly expressed in the genome. Collectively, microarray data revealed that coordinated and regulated transcription of genes involved in sugar uptake and metabolism is based on the specific carbohydrate provided. L. acidophilus 's adaptability to environmental conditions likely contributes to its competitive ability for limited carbohydrate sources available in the human gastrointestinal tract.
- Subjects :
- Catabolite repression
Carbohydrate metabolism
Biology
Models, Biological
chemistry.chemical_compound
Lactobacillus acidophilus
Bacterial Proteins
Humans
Raffinose
Phosphoenolpyruvate Sugar Phosphotransferase System
Oligonucleotide Array Sequence Analysis
Multidisciplinary
Reverse Transcriptase Polymerase Chain Reaction
Gene Expression Profiling
Fructose
Biological Sciences
Carbohydrate
Gastrointestinal Tract
Leloir pathway
chemistry
Biochemistry
Genes, Bacterial
Galactose
Carbohydrate Metabolism
ATP-Binding Cassette Transporters
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 103
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....dc40523b07771e340e7c97887373562b
- Full Text :
- https://doi.org/10.1073/pnas.0511287103