Back to Search
Start Over
SidL, an Aspergillus fumigatus Transacetylase Involved in Biosynthesis of the Siderophores Ferricrocin and Hydroxyferricrocin
- Source :
- Applied and Environmental Microbiology. 77:4959-4966
- Publication Year :
- 2011
- Publisher :
- American Society for Microbiology, 2011.
-
Abstract
- The opportunistic fungal pathogen Aspergillus fumigatus produces four types of siderophores, low-molecular-mass iron chelators: it excretes fusarinine C (FsC) and triacetylfusarinine C (TAFC) for iron uptake and accumulates ferricrocin (FC) for hyphal and hydroxyferricrocin (HFC) for conidial iron distribution and storage. Siderophore biosynthesis has recently been shown to be crucial for fungal virulence. Here we identified a new component of the fungal siderophore biosynthetic machinery: AFUA_1G04450, termed SidL. SidL is conserved only in siderophore-producing ascomycetes and shows similarity to transacylases involved in bacterial siderophore biosynthesis and the N 5 -hydroxyornithine:anhydromevalonyl coenzyme A- N 5 -transacylase SidF, which is essential for TAFC biosynthesis. Inactivation of SidL in A. fumigatus decreased FC biosynthesis during iron starvation and completely blocked FC biosynthesis during iron-replete growth. In agreement with these findings, SidL deficiency blocked conidial accumulation of FC-derived HFC under iron-replete conditions, which delayed germination and decreased the size of conidia and their resistance to oxidative stress. Remarkably, the sidL gene is not clustered with other siderophore-biosynthetic genes, and its expression is not affected by iron availability. Tagging of SidL with enhanced green fluorescent protein suggested a cytosolic localization of the FC-biosynthetic machinery. Taken together, these data suggest that SidL is a constitutively active N 5 -hydroxyornithine-acetylase required for FC biosynthesis, in particular under iron-replete conditions. Moreover, this study revealed the unexpected complexity of siderophore biosynthesis, indicating the existence of an additional, iron-repressed N 5 -hydroxyornithine-acetylase.
- Subjects :
- Cytoplasm
Siderophore
Virulence Factors
Iron
Green Fluorescent Proteins
Siderophores
Virulence
Genetics and Molecular Biology
Biology
Hydroxamic Acids
Ferric Compounds
Applied Microbiology and Biotechnology
Cofactor
Microbiology
Aspergillus fumigatus
chemistry.chemical_compound
Ascomycota
Biosynthesis
Acetyl Coenzyme A
Acetyltransferases
Phylogeny
Ferrichrome
Ecology
biology.organism_classification
Oxidative Stress
Cytosol
chemistry
Biochemistry
biology.protein
Food Science
Biotechnology
Subjects
Details
- ISSN :
- 10985336 and 00992240
- Volume :
- 77
- Database :
- OpenAIRE
- Journal :
- Applied and Environmental Microbiology
- Accession number :
- edsair.doi.dedup.....dc3f2b4ab910e6e72102f7dfdf94fa13
- Full Text :
- https://doi.org/10.1128/aem.00182-11