Back to Search Start Over

The blocks and weights of finite special linear and unitary groups

Authors :
Zhicheng Feng
Source :
Journal of Algebra. 523:53-92
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

This paper has two main parts. Firstly, we give a classification of the $\ell$-blocks of finite special linear and unitary groups $SL_n(\epsilon q)$ in the non-defining characteristic $\ell\ge 3$. Secondly, we describe how the $\ell$-weights of $SL_n(\epsilon q)$ can be obtained from the $\ell$-weights of $GL_n(\epsilon q)$ when $\ell\nmid\mathrm{gcd}(n,q-\epsilon)$, and verify the Alperin weight conjecture for $SL_n(\epsilon q)$ under the condition $\ell\nmid\mathrm{gcd}(n,q-\epsilon)$. As a step to establish the Alperin weight conjecture for all finite groups, we prove the inductive blockwise Alperin weight condition for any unipotent $\ell$-block of $SL_n(\epsilon q)$ if $\ell\nmid\mathrm{gcd}(n,q-\epsilon)$.<br />Comment: revised version, to appear in Journal of Algebra

Details

ISSN :
00218693
Volume :
523
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....dc384275af12ea673e67a31db7f8cb3f
Full Text :
https://doi.org/10.1016/j.jalgebra.2019.01.004