Back to Search Start Over

Limiting-laws of polyelectrolyte solutions. Ionic distribution in mixed-valency counterions systems. II. A comparison of conductometric data and theoretical predictions

Authors :
M.A.G.T. van den Hoop
H.P. van Leeuwen
Julio Benegas
Sergio Paoletti
A. Cesàro
J. C., Benega
Paoletti, Sergio
Cesaro, Attilio
M. A. G. T., van den Hoop
H. P., van Leeuwen
Source :
Scopus-Elsevier
Publication Year :
1991

Abstract

The competitive binding of monovalent and divalent counterions (M + and M 2+ , respectively) has been studied by a conductometric procedure as described by De Jong et al. (Biophysical Chemistry 27 (1987) 173) for aqueous solutions of alkali metal polymethacrylates in the presence of Ca (NO 3 ) 2 or Mg(NO 3 ) 2 . The experimentally obtained fractions of conductometrically free counterions are compared with theoretical values computed according to a new thermodynamic model recently developed by Paoletti et al. (Biophysical Chemistry, 41 (1991) 73). For the systems studied, the fractions of free monovalent and divalent counterions can be fairly well described by the theory. In fact, the results support the assumption that under the present conditions the conductometrically obtained distribution parameters ⨍ l and ⨍ 2 approximate the equilibrium fractions of free monovalent and divalent counterions. For a degree of neutralization of 0.8 and a molar concentration ratio of divalent counterions and charged groups on the polyion up to 0.25, the mean M + /M 2+ , exchange ratio ν has been found to be 1.39 ± 0.03 and 1.33 ± 0.03 for the alkali metal/Ca/PMA and alkali metal/Mg/PMA systems, respectively. These values agree well with the theoretical value, which for this particular case is 1.38.

Details

ISSN :
03014622
Volume :
42
Issue :
3
Database :
OpenAIRE
Journal :
Biophysical chemistry
Accession number :
edsair.doi.dedup.....dc1bde27fa41998f0987198edfe89f10