Back to Search
Start Over
On a Type I singularity condition in terms of the pressure for the Euler equations in $\mathbb R^3$
- Publication Year :
- 2020
- Publisher :
- arXiv, 2020.
-
Abstract
- We prove a blow up criterion in terms of the Hessian of the pressure of smooth solutions $u\in C([0, T); W^{2,q} (\mathbb R^3))$, $q>3$ of the incompressible Euler equations. We show that a blow up at $t=T$ happens only if $$\int_0 ^T \int_0 ^t \left\{\int_0 ^s \|D^2 p (\tau)\|_{L^\infty} d\tau \exp \left( \int_{s} ^t \int_0 ^{\s} \|D^2 p (\tau)\|_{L^\infty} d\tau d\s \right) \right\}dsdt \, = +\infty.$$ As consequences of this criterion we show that there is no blow up at $t=T$ if $ \|D^2 p(t)\|_{L^\infty} \le \frac {c}{(T-t)^2}$ with $c<br />Comment: 10 pages
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....dc1518feec9973c2aad906f9d9ac122c
- Full Text :
- https://doi.org/10.48550/arxiv.2012.11948