Back to Search
Start Over
Mechanism of the cadherin–catenin F-actin catch bond interaction
- Source :
- eLife. 11
- Publication Year :
- 2022
- Publisher :
- eLife Sciences Publications, Ltd, 2022.
-
Abstract
- Mechanotransduction at cell–cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell–cell junctions, ternary E-cadherin/β-catenin/αE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the αE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, the deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well described by a single-state slip bond, even when αE-catenin is complexed with β-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other αE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin–catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.
Details
- ISSN :
- 2050084X
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- eLife
- Accession number :
- edsair.doi.dedup.....dbe9c6004e8097fdfe90a8b7f90c4e09
- Full Text :
- https://doi.org/10.7554/elife.80130