Back to Search Start Over

Multivariate correlation measures reveal structure and strength of brain–body physiological networks at rest and during mental stress

Authors :
Luca Faes
Riccardo Pernice
Yuri Antonacci
Matteo Zanetti
Daniele Marinazzo
Giandomenico Nollo
Alessandro Busacca
Pernice, Riccardo
Antonacci, Yuri
Zanetti, Matteo
Busacca, Alessandro
Marinazzo, Daniele
Faes, Luca
Nollo, Giandomenico
Source :
Frontiers in Neuroscience, Frontiers in Neuroscience, Vol 14 (2021), FRONTIERS IN NEUROSCIENCE
Publication Year :
2021

Abstract

In this work, we extend to the multivariate case the classical correlation analysis used in the field of network physiology to probe dynamic interactions between organ systems in the human body. To this end, we define different correlation-based measures of the multivariate interaction (MI) within and between the brain and body subnetworks of the human physiological network, represented, respectively, by the time series of delta, theta, alpha, and beta electroencephalographic (EEG) wave amplitudes, and of heart rate, respiration amplitude, and pulse arrival time (PAT) variability. MI is computed: (i) considering all variables in the two subnetworks to evaluate overall brain–body interactions; (ii) focusing on a single target variable and dissecting its global interaction with all other variables into contributions arising from the same subnetwork and from the other subnetwork; and (iii) considering two variables conditioned to all the others to infer the network topology. The framework is applied to the time series measured from the EEG, electrocardiographic (ECG), respiration, and blood volume pulse (BVP) signals recorded synchronously via wearable sensors in a group of healthy subjects monitored at rest and during mental arithmetic and sustained attention tasks. We find that the human physiological network is highly connected, with predominance of the links internal of each subnetwork (mainly heart rate-respiration and delta-theta, theta-alpha, alpha-beta), but also statistically significant interactions between the two subnetworks (mainly heart rate-beta and heart rate-delta). MI values are often spatially heterogeneous across the scalp and are modulated by the physiological state, as indicated by the decrease of cardiorespiratory interactions during sustained attention and by the increase of brain–heart interactions and of brain–brain interactions at the frontal scalp regions during mental arithmetic. These findings illustrate the complex and multi-faceted structure of interactions manifested within and between different physiological systems and subsystems across different levels of mental stress.

Details

Language :
English
ISSN :
1662453X
Database :
OpenAIRE
Journal :
Frontiers in Neuroscience, Frontiers in Neuroscience, Vol 14 (2021), FRONTIERS IN NEUROSCIENCE
Accession number :
edsair.doi.dedup.....dbcb3f238e7a5c5b0ddf7f877b860e89