Back to Search Start Over

An updated management algorithm for incorporating minimally invasive techniques to treat thoracolumbar trauma

Authors :
Praveen V. Mummaneni
Daniel E. Gelb
Khoi D. Than
Vivek P. Gupta
Vaidya Govindarajan
Charles A. Sansur
Alexander T. Yahanda
Wilson Z. Ray
Jacob K. Greenberg
Eric O. Klineberg
Saad Javeed
Jon J. W. Yoon
Sanjay S. Dhall
Roberto J. Perez-Roman
Stephen Burks
Adam S. Kanter
Michael J. Lee
Paul Park
Andrew T. Dailey
Michael Wang
Daniel J. Hoh
Christopher F. Dibble
Source :
Journal of Neurosurgery: Spine. :1-10
Publication Year :
2021
Publisher :
Journal of Neurosurgery Publishing Group (JNSPG), 2021.

Abstract

OBJECTIVE Minimally invasive surgery (MIS) techniques can effectively stabilize and decompress many thoracolumbar injuries with decreased morbidity and tissue destruction compared with open approaches. Nonetheless, there is limited direction regarding the breadth and limitations of MIS techniques for thoracolumbar injuries. Consequently, the objectives of this study were to 1) identify the range of current practice patterns for thoracolumbar trauma and 2) integrate expert opinion and literature review to develop an updated treatment algorithm. METHODS A survey describing 10 clinical cases with a range of thoracolumbar injuries was sent to 12 surgeons with expertise in spine trauma. The survey results were summarized using descriptive statistics, along with the Fleiss kappa statistic of interrater agreement. To develop an updated treatment algorithm, the authors used a modified Delphi technique that incorporated a literature review, the survey results, and iterative feedback from a group of 14 spine trauma experts. The final algorithm represented the consensus opinion of that expert group. RESULTS Eleven of 12 surgeons contacted completed the case survey, including 8 (73%) neurosurgeons and 3 (27%) orthopedic surgeons. For the 4 cases involving patients with neurological deficits, nearly all respondents recommended decompression and fusion, and the proportion recommending open surgery ranged from 55% to 100% by case. Recommendations for the remaining cases were heterogeneous. Among the neurologically intact patients, MIS techniques were typically recommended more often than open techniques. The overall interrater agreement in recommendations was 0.23, indicating fair agreement. Considering both literature review and expert opinion, the updated algorithm indicated that MIS techniques could be used to treat most thoracolumbar injuries. Among neurologically intact patients, percutaneous instrumentation without arthrodesis was recommended for those with AO Spine Thoracolumbar Classification System subtype A3/A4 (Thoracolumbar Injury Classification and Severity Score [TLICS] 4) injuries, but MIS posterior arthrodesis was recommended for most patients with AO Spine subtype B2/B3 (TLICS > 4) injuries. Depending on vertebral body integrity, anterolateral corpectomy or mini-open decompression could be used for patients with neurological deficits. CONCLUSIONS Spine trauma experts endorsed a range of strategies for treating thoracolumbar injuries but felt that MIS techniques were an option for most patients. The updated treatment algorithm may provide a foundation for surgeons interested in safe approaches for using MIS techniques to treat thoracolumbar trauma.

Details

ISSN :
15475654
Database :
OpenAIRE
Journal :
Journal of Neurosurgery: Spine
Accession number :
edsair.doi.dedup.....db8e5b806e759bb8f623c8a528b1294d
Full Text :
https://doi.org/10.3171/2021.7.spine21790